
Transfer Theorems
Igor Walukiewicz

Bordeaux University

1 / 58

map(f , l) ≡ if l = nil then nil
else cons(f (head(l)),map(f , tail(l)))

map(f , (a, b, c)) = (f (a), f (b), f (c))

2 / 58

map(f , l) ≡ if l = nil then nil
else cons(f (head(l)),map(f , tail(l)))

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

3 / 58

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

Such trees are interesting because

They reflect a part of the semantics of a program.
They have decidable MSOL theory.
Interesting properties can be expressed in MSOL:

All elements in the result are in the range of f

4 / 58

While-programs

x := e | if x = 0 then I1 else I2 | while x > 0 do I

variables range over N and e are arithmetic expressions

While-programs are Turing powerful.
Does this mean that all other programming concepts are
obsolete?
Schemes give a way to show that they are not:

There is a recursive scheme whose tree cannot be generated by a
scheme of a while program.

5 / 58

Some history on the logical side

Z. Manna “Mathematical Theory of Computation”, 1974
Algorithmic Logic [A. Salwicki 68]
Dynamic Logic [V. Pratt 76]
Propositional Dynamic Logic [Parikh 78, Fisher & Ladner 79]
Propositinal Dynamic Logic with Deadlock [Harel 84]
Propositional Mu-calculus [Kozen 83]

Pnueli [76]
Mana & Pnueli [80]

6 / 58

+ Ianov’58 “The logical schemas of algorithms”

+ Park PhD’68 Recursive schemes

+ Scott, Elgot

+ Milner’73 Plotkin’77 PCF

Program Scheme

In!nite treeMeaning

abstraction

solution in a
free algebra

Interpretation

+ Aho’68 indexed languages

+ Maslov’74 ’76 higher-order indexed
languages and higher order pushdown automata.

Schemes Languages,
Higher-order pushdowns

+ Courcelle’76 for trees: 1-st order schemes=CFL
+ Engelfriet Schmidt’77 IO/OI

+ Damm’82 for languages: rec schemes= higher-order pusdowns

+ Kanpik Niwinski Urzyczyn’02 Safe schemes = higher-order pusdown

+ Senizergues’97 Equivalence of 1st order schemes is decidable

+Statman’04 Equivalence of PCF terms is undecidable

+Loader’01: Lambda-definability is undecidable

+ Ong’06: Decidability of MSOL theory

7 / 58

Two main algorithmic problems

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

f(head(l))

f(head(tail(l))

nil cons

Deciding equality of schemes:
Do two schemes generate the same trees?

Deciding MSOL theory for schemes:
Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues]
Ad MSOL: Decidable [Ong]

8 / 58

In this talk:
What are trees generated by higher-order schemes?

We will consider:
Operations on (colored) graphs F : Graphs → Graphs
Monadic Second-Order Logic

P(x) | E(x, y) | ϕ ∨ ψ | ¬ϕ | ∃x.ϕ | ∃X .ϕ

9 / 58

In this talk

Consider an operation F on graphs

Transfer property for F
For every ϕ one can effectively construct ϕ̂, s.t., for every G:

F(G) � ϕ iff G � ϕ̂.

We say in this case that F is MSO-compatible.

We will show that one can understand trees generated by schemes in
terms of such an operation.

10 / 58

Transfer
theorems

Transduction

11 / 58

MSO interpretations
Graph with labeled edges: G = 〈V , {Ea}a∈Σ〉

Graph with edge labels from Σ
↓

graph with edge labels form ∆

determined by formulas: {ϕa(x, y)}a∈∆

12 / 58

MSO-interpretations are MSO compatible.
For every ϕ one can effectively construct ϕ̂, s.t., for every M :

I(M) � ϕ iff M � ϕ̂.

ϕ̂ ≡ ϕ[ϕa(x, y) 7→ Ea(x, y)]

13 / 58

k-copying
Duplicating k-times a graph G = 〈V , {Ea}a∈Σ〉 .

1 2 k

G ′ = 〈V ′, {E ′a}a∈Σ, {Ei}i∈[k]〉; where
V ′ = V × [k];
E ′a((v, i), (w, i)) for (v,w) ∈ Ea and i ∈ [k];
Ei((v, i), (v, j)) for v,w ∈ V and j ∈ [k].

The operation of k-copying is MSO compatible.

14 / 58

MSO-transductions

MSO-transduction is a sequence of copying and MSO interpretations

Fact: MSO-transduction is MSO compatible.

M0
copy−→ M1

I−→ M2 . . . copy−→ Mk−1
I−→ Mk

ϕ0 ←− ϕ1 ←− ϕ2 . . . ←− ϕk−1 ←− ϕk

M0 � ϕ0 iff Mk � ϕk

Example: from one node graph we can construct any finite graph.

Remark: Actually it suffices to do one copying and one interpretation.

15 / 58

Transfer
theorems

Transduction

Unfolding
(=> Buchi and Rabin Thms)

16 / 58

Unfolding: the tree of all the paths in the graph from a given node.

gives
v v vv vvv

gives
l

l

ll

lll

r

lr

llr

Unf (G, v0) = 〈V U , {E∗a}a∈Σ〉 where
V U = paths in G starting from v0

E∗a (wv,wvu) if Ea(v, u), and w ∈ V U .

17 / 58

Unfolding: the tree of all the paths in the graph from a given node.

gives
v v vv vvv

gives
l

l

ll

lll

r

lr

llr

Unf (G, v0) = 〈V U , {E∗a}a∈Σ〉 where
V U = paths in G starting from v0

E∗a (wv,wvu) if Ea(v, u), and w ∈ V U .

18 / 58

Unfolding: the tree of all the paths in the graph from a given node.

gives
v v vv vvv

gives
l

l

ll

lll

r

lr

llr

Unf (G, v0) = 〈V U , {E∗a}a∈Σ〉 where
V U = paths in G starting from v0

E∗a (wv,wvu) if Ea(v, u), and w ∈ V U .

19 / 58

Theorem[Courcelle & W.,Muchnik]:
Unfolding is MSO-compatible.
For every ϕ(x) there is (effectively) ϕ̂(v0) such that
for every graph G and its vertex v0:

G � ϕ̂(v0) iff Unf (G) � ϕ(v0)

Remark 1: Unfolding cannot be defined by a transduction.

Remark 2: MSO-compatibility of the unfolding implies Büchi and
Rabin’s Theorems.

gives
l

l

ll

lll

r

lr

llr

20 / 58

Tree with substitutions: function symbols a, f , g, . . . ;
variables x, y, . . . ; and explicit substitutions subx .

eval(subx(s, t)) = s[t/x]

Theorem[Courcelle & Knapik]: For fixed finite set of variables:
eval is MSO-compatible

21 / 58

Transfer
theorems

Transduction

Unfolding
(=> Buchi and Rabin Thms)

Muchnik Iteration

22 / 58

Stupp iteration
() is

0 1 2

00 01 02 10 11 12

St(G) = 〈V +, {E∗a}a∈Σ, son〉
where for w ∈ V ∗, u, v ∈ V :

son(w,wv),
E∗a (wu,wv) when Ea(u, v).

23 / 58

Remark 1: Stupp iteration of the two node graph gives two full binary
infinite trees.

Remark 2: Unfolding of a graph may not be definable in the Stupp
iteration of the graph.

Remark 3: Stupp iteration of the full binary tree is MSO definable in
the full binary tree.

24 / 58

Muchnik iteration

0 1 2

00 01 02 10 11 12

G+ = 〈V +, {E∗}a∈Σ,E#, son〉
E#(wu,wuu) for w ∈ V ∗ and u ∈ V .

Theorem[Muchnik,W.]: Muchnik iteration is MSO-compatible.

25 / 58

2-tree: Muchnik iteration of the full binary tree.

26 / 58

Transfer
theorems

Transduction

Unfolding
(=> Buchi and Rabin Thms)

Muchnik Iteration

Pushdown hierarchy

27 / 58

Pushdown hierarchy

Level-0: finite graphs
Level-k: MSO-transductions of k-tree.

Equivalently:
Level-k: MSO transductions of unfoldings of Level-(k − 1) graphs.

Cor: All graphs in the pushdown hierarchy have decidable
MSO-theory.

Thm [Engelfriet, Carayol & Wöhrle]: Pushdown hierarchy is strict.

28 / 58

Transfer
theorems

Transduction

Unfolding
(=> Buchi and Rabin Thms)

Muchnik Iteration

Pushdown hierarchy

Machine characterization
HPDA

29 / 58

General idea
A graph of configurations of a machine:

nodes are configurations of the machine;
edges represent a step of the computation.

Finite automaton: its graph of configurations is just graph of the
automaton

Pushdown automaton:
nodes qab . . . b
edges
qaw→ qw
qaw→ qabw
qbw→ q.

30 / 58

2-nd order stack: example

A 2-stack is a stack of stacks. [a1
1 . . . a1

k1][a2
1 . . . a2

k2] . . . [an
1 . . . an

kn]

New operation of copying the top-most stack:
q[w1] . . . [wi]→ q[w1][w1] . . . [wi].

A maximal paths are of the form qk
1 qk

2 qk
3 .

Remark: The 2-stack gives additional power.

Remark: The above automaton recognizes {akbkck : k ∈ N}.

31 / 58

Higher order pushdowns ≡ Pushdown
hierarchy

Configuration graph of a pushdown automaton is interpretable in a
tree
Configuration graph of a k-pushdown automaton is interpretable in
a k-tree.

Cor: All these graphs have decidable MSO-theory.

Thm[Carayol & Wöhrle]:
Graphs of pushdown hierarchy level k are configuration graphs of k-th
order pushdown automata. (when ε-transitions are contracted).

32 / 58

Transfer
theorems

Transduction

Unfolding
(=> Buchi and Rabin Thms)

Muchnik Iteration

Pushdown hierarchy

Machine characterization
HPDA

33 / 58

Simply typed λ-calculus with fixpoints
Types: 0 is a type, and α→ β is a type if α, β types.
Constants: cα of type α.
Terms: cα, xα, MN , λxα.M .

Example: c, d : 0, g : 0→ 0, f : 0→ 0→ 0

f (gc)d : 0 f

g

c

d

λz.z(gc)d : (0→ 0→ 0)→ 0 λz.z

g

c

d

34 / 58

β-reduction: (λx.M)N →β M [N/x]

(λx.f (gx)d)c →β f (gc)d

(λz.z(gc)d)(λxy.y)→β (λxy.y)(gc)d →β d

Substitution is as in logic: one should avoid variable capture

(λh.λx.g(hx))(fx)→β λy.g(fxy)

and not λx.g(fxx)

f : 0→ 0→ 0, g, h : 0→ 0

35 / 58

A Böhm tree of a term M :
We reduce M to head normal form:
M →∗β λ~x.KN1 . . .Ni with K a variable or a constant.
BT (M) is λx.K

BT (N1) . . . BT (Ni)

Böhm tree of (λy.g(hxy)) is λy.g

h

x y

36 / 58

Where are trees?

c : 0, g : 0→ 0, f : 0→ 0→ 0
If M : 0 is a closed term, and M in head normal form then
M ≡ KN1 . . .Ni with K a constant. So it is either:

f

N1 N2

or g

N1

or c

with N0,N1 : 0. Hence BT (M) is a ranked tree.

Order of type: Ord(0) = 0, Ord(α→ β) = max(Ord(α) + 1,Ord(β)).

First order signature: all constants of order ≤ 1.

Remark: For closed M : 0 over a first order signature BT (M) is a
ranked tree.

37 / 58

λY -calculus

We add constants Y (α→α)→α and ωα, for every type α.

New reduction rule YM →δ M (YM).

Example: YM with M = (λx.ax)

YM →δ M (YM) ≡ (λx.ax)(YM)
→β a(YM)
→δ a(M (YM))
→β a(a(YM))→ . . .

38 / 58

A Böhm tree of a λY -term M is:
If M has no head normal form then ωα.
Otherwise λ~x.KN1 . . .Ni is the head normal form and BT (M) is

λx.K

BT (N1) . . . BT (Ni)

Y (λF .λx.ax(F(bx))) : 0→ 0

For closed terms of type 0 over first-order signatures, Böhm tree is a
tree.

39 / 58

Transfer
theorems

Transduction

Unfolding
(=> Buchi and Rabin Thms)

Muchnik Iteration

Pushdown hierarchy

Machine characterization
HPDA

Safe rec-schemes

Rec-schemes

40 / 58

Recursive program schemes

[Indermark, MFCS’76]

First example
F ≡ λx. if x = 0 then 1 else F(x − 1) · x.
Abstract form: F = λx. c (zx) a (m (F(px)) x).

Another program with the same abstract form:
Rev ≡ λx. if x = nil then nil else Rev(tl(x)) · hd(x)

Second-order scheme
map ≡ λf .λl. if l = nil then nil else cons(f (head(l)),map(f , tail(l)))

Order of a scheme: maximal order of a “nonterminal”.

41 / 58

Semantics

Example:
F = λx. a(F(bx))

F(c)→ a(F(bc))→ a(a(F(b(bc))))→ . . .

Semantics as a tree of execution
F = λx. g (a(F(bx))) x

F(c) =g

c

a g

b c

a g

b b c

a . . .

42 / 58

Recursion schemes ≡ λY -calculus

F1 =λ~x.M1
...

Fn =λ~x.Mn

T1 =Y (λF1.M1)
T2 =Y (λF2.M2)[T1/F1])

...
Tn =Y (λFn .(. . . ((Mn [T1/F1])[T2/F2]) . . .)[Tn−1/Fn−1])

Fact
The tree generated from Fn is BT (Tn).
There is also a translation from λY -terms to schemes.

43 / 58

Theorem[Courcelle]:
The meanings of 1-st order recursive schemes ≡
unfoldings of pushdown graphs.

Theorem[Knapik, Niwiński & Urzyczyn]:
n-th order safe schemes ≡ unfoldings of n-th order pushdown graphs.

Safe ≈ no parameters in recursion ≈ no problems with static links

44 / 58

Safety
Variables that occur free in a safe λ-term have orders not smaller than
that of the term itself.

Safe⇒ no need to perform variable renaming when doing β-reduction.

(λxα.M)N α →β M [N α/xα]

(λyβ.K)β→γ [N α/xα] β has smaller order than α

Observe that it suffices that N is safe.

45 / 58

Tree with substitutions: function symbols a, f , g, . . . ;
variables x, y, . . . ; and explicit substitutions subx .

eval(subx(s, t)) = s[t/x]

Theorem[Courcelle & Knapik]: For fixed finite set of variables:
eval is MSO-compatible

46 / 58

What about schemes that are not safe?

New operations of panic on 2-stack, and then collapse on a
higher-order stack. [Urzyczyn, Knapik & Niwiński & Urzyczyn & W., Hague & Murawski & Ong & Serre]

Theorem[Hague & Murawski & Ong & Serre]:
n-th order schemes ≡ unfoldings of n-th order collapse pushdown
graphs.

Theorem[Ong]:
MSO theory of the tree generated by a recursive scheme is decidable.

Theorem[Parys]:
Urzyczyn’s scheme is not equivalent to a safe scheme.

47 / 58

Transfer
theorems

Transduction

Unfolding
(=> Buchi and Rabin Thms)

Muchnik Iteration

Pushdown hierarchy

Machine characterization
HPDA

Safe rec-schemes

Rec-schemes

Evaluation of

48 / 58

c0

c1

...
...

c2

...
...

h−→ M0

M1

...
...

M2

...
...

BT−→ d0

d1

...
...

d2

...
...

49 / 58

Signature Σ = (B,C)
B - a set of base types
C - a set of constants with types in Types(B).

Terms over Σ defined as usual.

Homomorphism, for two signatures Σ1 = (B1,C1), Σ2 = (B2,C2),
is a function

h : B1 → Types(B2) h : C1 → Terms(Σ2)

with the restriction that h(cα) is term of type h(α).

50 / 58

First-order signature Σ = (B,C):
all constants in C have types of order ≤ 1

c : β1 → · · · → βk → γ with β1, . . . , βk , γ ∈ B.

Applicative tree: well typed term (infinite) of a base type constructed
only from constants.

c : β1 → · · · → βk → γ

c1 : . . .→ β1

...

. . . ck : . . .→ βk

...

Rem: Applicative trees are just ranked trees so we can talk about their
MSO-theories.

51 / 58

First-order signatures Σ1 = (B1,C1), Σ2 = (B2,C2) and a
homomorphism

h : B1 → Types(B2) h : C1 → Terms(Σ2)

such that h(γ) is a base type.

If t : γ is an applicative tree over Σ1 then BT (h(t)) is an applicative
tree over Σ2.

c0

c1

...
...

c2

...
...

h−→ M0

M1

...
...

M2

...
...

BT−→ d0

d1

...
...

d2

...
...

Tree operation t 7→ BT (h(t)).
52 / 58

Tree operation t 7→ BT (h(t))

c0

c1

...
...

c2

...
...

h−→ M0

M1

...
...

M2

...
...

BT−→ d0

d1

...
...

d2

...
...

Thm[Salvati & W.]:
Operation t 7→ BT (h(t)) is MSO compatible.

53 / 58

For every ϕ there is ϕ̂ s.t. for every applicative tree t of type γ:

BT (h(t)) � ϕ iff t � ϕ̂

Take an λY -term M and c : γ. Set h(c) = M . We get:

BT (h(c)) � ϕ iff c � ϕ̂

This is Ong’s theorem: BT (M) has decidable MSO-theory.

Remark:
Every tree in the pushdown hierarchy is I(BT (M)) for some M .

Thm[Parys]:
BT (M) can be outside the pushdown hierarchy.

54 / 58

We have modules M1, . . . ,Mk .
Can we write a program with these modules

whose execution satisfies ϕ?

Take homomorphism h(ci) = Mi :

BT (h(t)) � ϕ iff t � ϕ̂

Any t � ϕ̂ gives a program h(t) satisfying ϕ.
If ϕ̂ is satisfiable then there is a regular t
Using the fixpoint combinator we get a finite program for h(t).

55 / 58

Transfer
theorems

Transduction

Unfolding
(=> Buchi and Rabin Thms)

Muchnik Iteration

Caucal hierarchy

Machine characterization
HPDA

Safe rec-schemes

Rec-schemes

Evaluation of

56 / 58

Scheme of recursive calls

Each call represents a procedure h(ci) = Mi .

Given a property ϕ we can say at which recursive calls it holds.

57 / 58

Scheme of recursive calls

Each call represents a procedure h(ci) = Mi .

Given a property ϕ we can say at which recursive calls it holds.

58 / 58

