Transfer Theorems

Igor Walukiewicz

Bordeaux University

map(f,1) = if | = nil then nil
else cons(f(head(!)), map(f, tail(l)))

map(f, (a, b, ¢)) = (f(a),f(b),f(c))

map(f,l) = if | = nil then nil
else cons(f(head(!)), map(f, tail(l)))

if I=nil then

N

nil cons
f(head(1)) if tail(l)=nil then

nil cons

N

f(head(tail(l)) if taz'l(tc.w'l(l)):m'l then

if I=nil then
nil cons
f(head(1)) if tail(l)=nil then
nil cons

f(head(tail(l)) if taz’l(tqz'l(l)):nil then

Such trees are interesting because

e They reflect a part of the semantics of a program.

e They have decidable MSOL theory.
e Interesting properties can be expressed in MSOL.:
o All elements in the result are in the range of f

WHILE-PROGRAMS
z:=e|if £ =0then 1 else I | while z>0do [

variables range over N and e are arithmetic expressions

e While-programs are Turing powerful.

e Does this mean that all other programming concepts are
obsolete?

e Schemes give a way to show that they are not:

e There is a recursive scheme whose tree cannot be generated by a
scheme of a while program.

SOME HISTORY ON THE LOGICAL SIDE

e Z. Manna “Mathematical Theory of Computation”, 1974
Algorithmic Logic [A. Salwicki 68]

Dynamic Logic [V. Pratt 76]

Propositional Dynamic Logic [Parikh 78, Fisher & Ladner 79]
Propositinal Dynamic Logic with Deadlock [Harel 84]
Propositional Mu-calculus [Kozen 83]

Pnueli [76]
o Mana & Pnueli [80]

Languages,

Schemes Higher-order pushdowns

+ lanov’58 “The logical schemas of algorithms”
+ Park PhD’68 Recursive schemes
+ Scott, Elgot

Program — "+ Scheme

+ AhO’68 indexed languages

olutionina + Maslov’'74 76 higher-order indexed
free algebra languages and higher order pushdown automata.

Interpretation
Meaning ——— Infinite tree

+ Milner’73 Plotkin’77 rcr

+ Courcelle’76 for trees: 1-st order schemes=CFL

+ Engelfriet Schmidt’77 io/01

+ Damm’82 for languages: rec schemes= higher-order pusdowns

+ Kanpik Niwinski Urzyczyn'02 Safe schemes = higher-order pusdown

+ Senizergues’97 Equivalence of 1st order schemes is decidable
+Statman’04 Equivalence of PCF terms is undecidable
+Loader’01: Lambda-definability is undecidable

+ Ong’OG: Decidability of MSOL theory

TWO MAIN ALGORITHMIC PROBLEMS

if l=nil then
nil cons
f(head(l)) if tail(l)=nil then
nil cons

f(head(tail(l)) if f,nil(t/{,il(})):nil then

Deciding equality of schemes:
Do two schemes generate the same trees?
Deciding MSOL theory for schemes:
Does a given MSOL formula hold in a tree generated by a scheme?

Ad equality: Decidable for schemes of order 1 [Senizergues]
Ad MSOL: Decidable [Ong]

IN THIS TALK:
What are trees generated by higher-order schemes?

We will consider:
e Operations on (colored) graphs F : Graphs — Graphs
e Monadic Second-Order Logic

P(z) | E(z,y) | oVY | 9| Fz.o|IX.0

IN THIS TALK

Consider an operation F on graphs

Transfer property for 7
For every o one can effectively construct ¢, s.t., for every G:

F(Q)Ep iff GEG.

We say in this case that 7 is MSO-compatible.

We will show that one can understand trees generated by schemes in
terms of such an operation.

Transfer
theorems

Transduction

MSO INTERPRETATIONS
Graph with labeled edges: G = (V,{E,}aex)

Graph with edge labels from X

|
graph with edge labels form A

determined by formulas: {va(z, ¥) }een

N

MSO-interpretations are MSO compatible.
For every ¢ one can effectively construct ¢, s.t., for every M:

IM)Ee iff MEG.

k-COPYING

Duplicating k-times a graph G = (V,{E,}sex) -

G = (V' {Ei}aes, { Biticy); Where
oA — T x [k];
e F/((v,1i),(w,1)) for (v,w) € E, and i € [k];
e Ei((v,1),(v,j)) forv,we Vandj e [k].

The operation of k-copying is MSO compatible.

MSO-TRANSDUCTIONS

MSO-transduction is a sequence of copying and MSO interpretations

Fact: MSO-transduction is MSO compatible.

w22 Gye RO Y AR <« B VAR
@y < @1 S Wynas S g S— @)

Example: from one node graph we can construct any finite graph.

@@ @

Remark: Actually it suffices to do one copying and one interpretation.

Transfer
theorems

Transduction

Unfolding
(=> Buchi and Rabin Thms)

Unfolding: the tree of all the paths in the graph from a given node.

v v vV VvV

(I) gives O—»O—»O—»O -------

Unfolding: the tree of all the paths in the graph from a given node.

v v vV VvV

(D gives o—0O0—m0O0O—0O

11} lIr

Unfolding: the tree of all the paths in the graph from a given node.

v v vV VvV

(I) gives o—0O0—m0O0O—0O

Unf(G,w) = (VU {E*}.ex) where
e VU = pathsin G starting from v
o EX(wuv,wuu) if E,(v,u),and w € VU,

Theoremicourcelie & W.Muchnik:

Unfolding is MSO-compatible.

For every ¢(z) there is (effectively) ¢(vp) such that
for every graph G and its vertex vy:

GEo(w) it Unf(G)F ¢(w)

Remark 1: Unfolding cannot be defined by a transduction.

Remark 2: MSO-compatibility of the unfolding implies Blchi and

Rabin’s Theorems. ,
6@ gives

Tree with substitutions: function symbols a, f, g, . .
variables z, y, . . . ; and explicit substitutions sub,.

eval(subs(s,t)) = st/]

9
s
%\4
I

Theoremicourcele & knapik: FOr fixed finite set of variables:
eval is MSO-compatible

s

Transfer
theorems

Transduction

Unfolding

(=> Buchi and Rabin Thms)

Muchnik Iteration
k-tree

STUPP ITERATION

St(O O O D)

St(G) = (VT {E;}aes, son)
where forw € V*, u,v e V:
e son(w,wuv),

o E¥(wu,wv)when E,(u,v).

Remark 1: Stupp iteration of the two node graph gives two full binary
infinite trees.

Remark 2: Unfolding of a graph may not be definable in the Stupp
iteration of the graph.

Remark 3: Stupp iteration of the full binary tree is MSO definable in
the full binary tree.

MUCHNIK ITERATION

Gt = (VT {E*}uex, By, son)
o Fy(wu,wuu)forwe V*andue V.

Theoremuuennikwy: Muchnik iteration is MSO-compatible.

2-tree: Muchnik iteration of the full binary tree.

Transfer
theorems

Transduction

Unfolding

(=> Buchi and Rabin Thms)

T

Muchnik Iteration /

k-tree

Pushdown hierarchy
T(k — tree) = T(Unf ... (T(Unf(:)...)

PUSHDOWN HIERARCHY

e Level-0: finite graphs
o Level-k: MSO-transductions of k-tree.

Equivalently:
e Level-k: MSO transductions of unfoldings of Level-(k — 1) graphs.
k

T (k — tree) = T(Unf (... (T (Unf(finite graph)...)

Cor: All graphs in the pushdown hierarchy have decidable
MSO-theory.

Thm [Engelfriet, Carayol & Wohrle] = Pushdown hierarChy is strict.

Transfer
theorems

Transduction

Unfolding

(=> Buchi and Rabin Thms)

T

Muchnik Iteration /

k-tree

Pushdown hierarchy

T(k — tree) = T(Unf ... (T(Unf(-)...

Machine characterization
HPDA

(GGENERAL IDEA

A graph of configurations of a machine:

e nodes are configurations of the machine;
e edges represent a step of the computation.

Finite automaton: its graph of configurations is just graph of the
automaton

Pushdown automaton: / \
nodes qab...b qdb q

edges / \ /
qaw — qW qabb gb
qgaw — qabw

gbw — q. . abb

2-ND ORDER STACK: EXAMPLE

A 2-stack is a stack of stacks. [a] ... a}][a7...a}].. [a] ...}

New operation of copying the top-most stack:

qlun] ... [wi] = qwi][w1] ... [w].
q1[a] — qifaa) - - = qld¥]—
g2[a*] - go[a*[a"] — - qld][ad]...[a*] —
gldlad)...[0¥] = gsfad]...[] — - asla’] =gzl

A maximal paths are of the form ¢f g5 ¢&.

Remark: The 2-stack gives additional power.

Remark: The above automaton recognizes {a*b*c* : k € N}.

HIGHER ORDER PUSHDOWNS = PUSHDOWN
HIERARCHY

e Configuration graph of a pushdown automaton is interpretable in a
tree

e Configuration graph of a k-pushdown automaton is interpretable in
a k-tree.

Cor: All these graphs have decidable MSO-theory.

Thmcarayol & wehrie]:

Graphs of pushdown hierarchy level k are configuration graphs of &-th
order pushdown automata. (when e-transitions are contracted).

Transfer
theorems

Transduction

Unfolding

(=> Buchi and Rabin Thms)

T Pushdown hierarchy
T(k — tree) = T(Unf ... (T(Unf(:)...)

Muchnik Iteration /

k-tree Machine characterization

HPDA

AY — calculus

SIMPLY TYPED A-CALCULUS WITH FIXPOINTS

e Types: 0is atype, and o — S is a type if «, 8 types.
e Constants: ¢* of type a.
e Terms: ¢%, z% MN, Mz®.M.

Example: ¢,d:0, ¢:0—0, f:0—>0—=0

flge)d : 0 f
/N

g d

C

Az.z(ge)d : (0 —-0—0)—0

p-reduction: (\z.M)N —3 M[N/z]

(Az.f(gz)d)c —5 f(gc)d
(Az.2(gc)d)(Azy.y) —p (Azy.y)(ge)d —p d

Substitution is as in logic: one should avoid variable capture

(ArAz.g(hz))(fz) —5 Ay.g(fry)
and not \xz.g(fzx)

f: 05020, g,h:0—0

A Bohm tree of a term M:

e We reduce M to head normal form:
M =5 AZ. KNy ... N; with K a variable or a constant.

) BT(M) is e K

1IN
BT(N,) -+~ BT(N)

Bohm tree of (Ay.g(hzy)) is Ny.4

h

7\

T Y

Where are trees?

c:0,g:0=20,f:0-0—0
If M :0is a closed term, and M in head normal form then
M = KN; ... N; with K a constant. So it is either:

f or g or c

/N |

M Ny Ny
with Ny, N; : 0. Hence BT (M) is a ranked tree.

Order of type: Ord(0) = 0, Ord(a —) = max(Ord(a) + 1, Ord(p)).

First order signature: all constants of order < 1.

Remark: For closed M : 0 over a first order signature BT'(M) is a
ranked tree.

PR ¢ \[LCULUS

We add constants Y@= and w?, for every type a.

New reduction rule YM —s M(YM).

Example: YM with M = (Az.az)

YM -5 M(YM) = (Az.ax)(YM)
—B a(YM)
—5 a(M(YM))
—a ol AT = o

A Bohm tree of a A\ Y-term M is:
e If M has no head normal form then w®.
e Otherwise A\Z.KN; ... N; is the head normal form and BT (M) is

Az K
g

R BT

YV(AF. Az.ax(F(bz))) : 0—0

(Az.az(Y F(bz))
~—

Ag.@

/\ Y F(bz) —(Az.az(Y F(bz))(bx) -
x a‘/ a(bx)(Y F(b(bz)))
/ \ Y F(b%z)
bx a~"
b,»T/ \a__/YF(b%)

For closed terms of type 0 over first-order signatures, Bohm tree is a
tree.

Transfer
theorems

Transduction

Unfolding

(=> Buchi and Rabin Thms)

T Pushdown hierarchy

T(k — tree) = T(Unf ... (T(Unf(:)...)

Muchnik Iteration /

k-tree Machine characterization _

HPDA

Safe rec-schemes

N
Rec-schemes = \Y — calculus

10

RECURSIVE PROGRAM SCHEMES

[Indermark, MFCS’76]

FIRST EXAMPLE
e F=MXz.if t=0then lelse F(z —1) - x.
e Abstract form: F' = Az. ¢ (zz) a (m (F(px)) z).

Another program with the same abstract form:
Rev = Az. if z = nil then nil else Rev(tl(z)) - hd(z)

SECOND-ORDER SCHEME
map = Af.Al. if | = nil then nil else cons(f(head(l)), map(f, tail(l)))

Order of a scheme: maximal order of a “nonterminal”.

SEMANTICS

Example:
57 =Nl)

F(c) = a(F(bc)) = a(a(F(b(bc)))) — ...

SEMANTICS AS A TREE OF EXECUTION
F = Az. g (a(F(bx)))

a

9

/\

RECURSION SCHEMES =)\ Y-CALCULUS

Fi =\%.M;

18 ol

Ty =Y (\F1.M)
Ty =Y (\Fy.M)[T1/ Fy])

Ty =Y(AFo.(... (Mu[T1/F1))[T2/ F3)) ..)Tt /Fp1])

Fact

The tree generated from F,, is BT(T,,).
There is also a translation from A Y-terms to schemes.

Theoremicourcele):
The meanings of 1-st order recursive schemes =
unfoldings of pushdown graphs.

Theorem[Knapik, Niwirski & Urzyczyn].
n-th order safe schemes = unfoldings of n-th order pushdown graphs.

Safe ~ no parameters in recursion ~ no problems with static links

SAFETY
Variables that occur free in a safe A-term have orders not smaller than
that of the term itself.

Safe = no need to perform variable renaming when doing s-reduction.
(Az*.M)N* —5 M[N®/z®]
(AP .K)P7 [N*/z%] B has smaller order than «

Observe that it suffices that IV is safe.

Tree with substitutions: function symbols a, f, g, . .
variables z, y, . . . ; and explicit substitutions sub,.

eval(subs(s,t)) = st/]

9
s
%\4
I

Theoremicourcele & knapik: FOr fixed finite set of variables:
eval is MSO-compatible

s

WHAT ABOUT SCHEMES THAT ARE NOT SAFE?

New operations of panic on 2-stack, and then collapse on a
higher'order StaCk. [Urzyczyn, Knapik & Niwinski & Urzyczyn & W., Hague & Murawski & Ong & Serre]

Theorem[Hague & Murawski & Ong & Serre].
n-th order schemes = unfoldings of n-th order collapse pushdown
graphs.

Theoremong:
MSO theory of the tree generated by a recursive scheme is decidable.

Theoremepars:
Urzyczyn’s scheme is not equivalent to a safe scheme.

Transfer
theorems

Transduction

Unfolding

(=> Buchi and Rabin Thms)

T Pushdown hierarchy
T(k — tree) = T(Unf ... (T(Unf(:)...)

Muchnik Iteration /

k-tree Machine characterization _

HPDA

Evaluation of

Safe rec-schemes

N

Rec-schemes = \Y — calculus

AY — terms

8

h BT
— =

C/\z /“\ /\
- /\/\ /\/\

Signature > = (B, C)

e B - aset of base types

e (- a set of constants with types in Types(B).
Terms over ¥ defined as usual.

Homomorphism, for two signatures 31 = (By, C1), X2 = (Bs, Cs),
is a function

h: By — Types(Bs) h: Cy — Terms(¥2)

with the restriction that 4(c¢®) is term of type h(«).

First-order signature ¥~ = (B, C):
all constants in C have types of order < 1

c:P1— - — Pr— 7 with By o000/ 5 E 18,

Applicative tree: well typed term (infinite) of a base type constructed
only from constants.

c:fr— = By

T T

01:...—>61 Ck:...—>5k

Rem: Applicative trees are just ranked trees so we can talk about their
MSO-theories.

First-order signatures 31 = (By, (1), X2 = (B, () and a
homomorphism

h: By — Types(Bs) h: Cy — Terms(32)
such that h(~) is a base type.

If ¢ : v is an applicative tree over ¥; then BT (h(t)) is an applicative
tree over Y.

h BT
5 My 5

rF =
P N AT

Tree operation ¢ — BT (h(t)).

Tree operation ¢ — BT'(h(t))

h BT
] My :

T . N
//\. /\/\ /\/\:

Thm[SaIvati &W.J.
Operation ¢+~ BT(h(t)) is MSO compatible.

For every ¢ there is ¢ s.t. for every applicative tree ¢ of type ~:

BT(h(t)Ee iff tE@

Take an AY-term M and c: «. Set h(c) = M. We get:
BT (h(c)) E ¢ iff El=az

This is Ong’s theorem: BT (M) has decidable MSO-theory.

Remark:
Every tree in the pushdown hierarchy is Z(BT(M)) for some M.

Thm[Parys]:
BT(M) can be outside the pushdown hierarchy.

We have modules M, ..., M.
Can we write a program with these modules
whose execution satisfies ¢?

Take homomorphism h(c¢;) = M;:

BT(h(t)) F e iff tFE @

e Any t E ¢ gives a program h(t) satisfying .
e If ¢ is satisfiable then there is a regular ¢
e Using the fixpoint combinator we get a finite program for i(t).

Transfer
theorems

Transduction

Unfolding

(=> Buchi and Rabin Thms)

T

Muchnik Iteration /

k-tree

Evaluation of

Caucal hierarchy
T(k — tree) = T(Unf ... (T(Unf(:)...)

Machine characterization __
HPDA R

Safe rec-schemes

N

Rec-schemes = \Y — calculus

AY — terms

Scheme of recursive calls

@
x

Each call represents a procedure h(c;) = M;.

Given a property ¢ we can say at which recursive calls it holds.

Scheme of recursive calls

Cr
7\

C3 Cy

BT(t]e,) F ¢

Each call represents a procedure h(c;) = M;.

Given a property ¢ we can say at which recursive calls it holds.

