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Overview 

• Background  about Knot Theory 
– Knots 

– Knot transformations via Reidemeister moves I and II 

– Main problems in knot theory. 

• Finite representation of Knots 
– String (Gauss words) 

–  Reidemeister moves as rewriting rules on Gauss 
words 

• Lower and upper bound on the length of 
transformations via Rm of types I and II 
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Background 

• Knot Theory is an interesting area in Mathematics 
which is part of topology. 
 

• The main object studied in Knot Theory is 
mathematical knots.  

– This object has many properties.  Mathematicians 
study different properties of knots and knot 
transformations. 
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What is a knot? 
 

 A knot is a simple closed curve in 
three-dimensional space.  

 An unknotted circle is the simplest  

   trivial knot known as the unknot. 
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Knot transformations 

Type I  
Allows us to put in/take out a twist. 
 
 

Type II 
Allows us to lay one strand over another  
and pull them apart.  
 
 

Type III 
Allows us to slide a strand of the knot from one 
side of a crossing to the other.   
 

Two knots are equivalent if and only if one can be obtained from the 
other by a sequence of Reidemeister moves. 

Reidemeister theorem [Reidemeister,1927] 
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K1 K2 

 Algorithmic problems of knots 

Equivalence  

 

 

• Given two knot diagrams K1 and K2. Can K1 be 
transformed into K2 by a sequence of Reidemeister 
moves? 
 

Unknottedness 

 

 

• Given a knot diagram K1.  Can K1 be transformed into the 
unknot by a sequence of Reidemeister moves? 

 

 

 

 

? 

= 

K1 
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Decidability and complexity 

• Equivalence is decidable [Haken, 1961] but no 
precise complexity is known. 

 

• Unknottedness is decidable [Haken, 1961] and 
in NP [Hass et al.,1997]. 

 

• For a knot diagram with n-crossings 
– Lower bound  = n

2
 [Hass and Towik, 2010] 

– Upper bound =2
cn

 where c=15
4
[Suh, 2008]  
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Discrete representation of knots 



Discrete representation of knots 
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Discrete representation of knots 
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Discrete representation of knots 

O1U2O3U1O2U3 

Gauss word 

(O) going over  

(U) going under  
1 

2 

3 

1 2 3 1 2 3 

Shadow Gauss word 
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Basic definitions 

• A Gauss word w is a data word over the alphabet Σ×N 
where Σ = {U,O}, such that for every n ∈ N either |w|(U,n) = 
|w|(O,n)= 0, or |w|(U,n)= |w|(O,n) = 1. 

 

Example: O1U2O3U1O2U3  --> (O,1)(U,2)(O,3)(U,1)(O,2)(U,3)  

 

• A shadow Gauss word w is a word over the alphabet N (i.e. 
finite sequence of natural numbers) such that for every n ∈ 
N either |w|n = 0 or |w|n = 2. 

 

Example: 1 2 3 1 2 3 
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• A cyclic shift sk with k ∈ N is a function sk : Σ
∗ → Σ∗ such that 

for a word w ∈ Σ∗ where w = w1,...,wn, the cyclic shift of w is 
defined as sk(w1, ...,wn) = wi’, ...,wn’ where w(i+k) (mod n) = wi’ 
for some i = 1, ..., n. 
 

• Example: Let w= O1U2O3U1O2U3 the following are all cyclic 

words of w.  

s0(w)=O1U2O3U1O2U3 

s1(w)= U2O3U1O2U3O1 

s2(w)= O3U1O2U3O1U2 

s3(w)= U1O2U3O1U2O3 

S4(w)= O2U3O1U2O3U1 

s0(w)=U3O1U2O3U1O2 
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• Let w and w be some Gauss words, w is equivalent to 
w’ up to cyclic shift iff |w| = |w’| = n such that ∃k : 0 
≤ k < n and w = sk(w’). 

 

• Let w = (a1, b1), · · ·, (an, bn) where ai ∈ {O,U} and bi ∈ 
[1, · · · , n], w is equivalent to w’ up to renaming of 
labels iff there exists a bijective mapping r: [1, · · · , n] 
→ [1, · · · , n] such that w=(a1,r(b1)), · · · ,(an,r(bn)). 

  

• By [w]c and [w]r  we denote a c-equivalence classes 
and an r-equivalence classes of w respectively. 14 



Knot rewriting 
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xOiOjyUjUi ↔ xy 

y 

x 

y 

x 
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Formulation of Reidemeister moves  
as string rewriting rules 

• Type I (or type II) increase is denoted by I↑ (or II↑ respect.) 
and type I (or type II) decrease is denoted by I↓ (or II↓ 
respectively). 

2.1  xOiOjyUjUi ↔ xy 
2.2  xOiOjyUiUj ↔ xy 

1.1   xUiOi ↔ x 
1.2   xOiUi ↔ x 

Knot transformations as rewriting of  Gauss words: 

Result: Formalized and minimized a set of rules sufficient for rewritings 
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Reachability properties of 
Reidemeister moves 
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w

w’

w’’’

w’’

* * 

* * 

⇒R Locally  
Confluent 

⇒R Globally  
confluent 

w

w’

w’’’

w’’

* * 



• Newman’s Lemma.  If a relation ⇒R is locally confluent and 
has no infinite rewriting sequences then ⇒R is (globally) 
confluent. 

 

• Let w be a Gauss word and R ∈ {{I↓}, {II↓}, {I↓,II↓}}, then 
w is reducible iff there exists a word w’ such that w ⇒∗

R w’.  

 

• w’ is called R-reduct of w (denoted by ReductR(w)) if w’ is 
not reducible by ⇒R respectively 
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Reachability by type I 

Proposition 1. Let R = {I↓}, the relation ⇒R over Σ is 
confluent. 

 

Proof idea: 

20 

• ⇒R is locally confluent. 
Assume that w ⇒R w’ and w ⇒R w’’ for some word w. Let w = 
xaybz where a, b ∈ {OiUi, UjOj} for some i,j≥1. Then w = xaybz 
⇒R xybz = w’ and w = xaybz ⇒R xybz = w’’. Now we have 
w’⇒R  xyz and w’’ ⇒R xyz  

 
• Any sequence w1 ⇒R w2, . . . ,⇒R wn will terminate .  
• By Newman’s lemma,  ⇒R is a confluent.  



Reachability by type I 

Proposition 2. Let w,w’∈ Σ∗c and R = {I↓}, if w ⇒∗
{I} w’ then 

ReductR(w) =ReductR(w’). 

Proof 

• Suppose that w⇒∗
R w’. Then w⇒∗

R ReductR(w) and 
w’⇒∗

R ReductR(w’). 

• It follows that w ⇒∗
R ReductR(w’). By Proposition 1 

ReductR(w) = ReductR(w’). 

 

• Corollary 1. If w⇒∗
I w’ then w⇒∗

{I↓} Reduct {I↓}(w’) ⇒∗
{I↑} w’. 
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Reachability by type I 

Proposition 3. Given two Gauss words w and w’ where |w| = 
2n and |w’| =2m, if w ⇒∗

I w’ then the total number of 
transformations sufficient to rewrite w to w’ is at most n+m. 

Proof  

• This is the total number of transformations in the sequence 
w ⇒{I↓} wi, . . . ,⇒ {I↓} Reduct {I↓} (w’)⇒{I↑}wj, . . . ,⇒ {I↑} w’ 
obtained from Corollary 1. Since type I can increase or 
decrease the size of a Gauss word by ±2, then the number 
of transformations sufficient to reach Reduct{I↓}(w’) from w 
is at most n and no more than m to reach w’ from 
Reduct{I↓}(w’).  
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Upper bounds of types I and II 

Reachability Upper bound 

Type I only n+m 

Type II only (n+m)/2 

Types I,II  n+m 

Result: Upper bounds on the number of transformations to 
reach one knot diagram (K1) from another (K2) by RMI, RMII, RM I&II. 

n – is a number of crossings in a knot diagram K2  
m – is a number of crossings in a knot diagram K1  
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Lower bound: type I 

Given a Gauss word w, we associate a non-negative integer 
vector S(w) = <x, y> with w where x denote the number of 
adjacent pairs of OU and UO in w and y denote the number of 
adjacent pairs of UU and OO in w. 

 

Example.   

• Given w = U1U2U3U4O4O3O2O1 and w’=U1O1U2O2U3O3U4O4 

• Let S1 and S2 be two vectors associated with w and w 
respectively. Then S1 = <2,6> and S2 = <8, 0>. 

• I↑ correspond to the addition of two symbols of the form 
UO or OU and type I ↓ will correspond to the deletion of 
the symbols UO or OU 
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Lower bound: type I 

Proposition 4. For Gauss words w and w’ the following holds: 
1. If w ⇒I↑ w’ then either S(w’) = S(w) + <2, 0> or S(w) = S(w’) + <0, 2> 

2. If w ⇒I↓ w’ then either S(w’) = S(w) − <2, 0> or S(w) = S(w’) − <0, 2> 

Proof idea: 

• The values of S(w’) depend on where the symbols UO or OU 
are inserted in w.  

• w = OOx, w’= OUOOx and S(w’) = S(w) + <2, 0>. 

• w = UOx, w’ = UUOOx and S(w’) = S(w) + <0,2>. 

• w = OUOOx, w’= OOx and S(w’) = S(w) - <2, 0>. 

• w = UUOOx, w’ = UOx and S(w’) = S(w) - <0,2>. 
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Lower bound: type I 

Theorem 1. Let w = U1 . . . UnOn . . . O1 and w’= U1O1 . . . UmOm 
where |w| =2n and |w’| = 2m, then w ⇒∗

I w’ and the total 
number of transformations required to rewrite w to w’ is at least 
n+m-2 

Proof idea: 

• Let S(w) and S(w’) be the vectors associated with w and w’ 
respectively. 

•  By Definition, S(w) = <2,2(n -1)>  and S(w’) = <2m, 0>.  

• Application of type I↓ to w can only reduce either the value of 
first component or the value of the second component of S(w) 
by 2 and application of type I↑ moves can only increase 
either the value of first component or the value of the second 
component of S(w) by 2 (Proposition 4).   26 



• Therefore to transform w to w’, we will need to use at 
least n-1 applications of type I↓ moves to reduce the 
value of first component of S(w) from 2(n-1) to 0 and 
at least m-1 applications of type I↑ moves to 
increase the value of second component of S(w) from 
1 to 2m. 
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Lower bound: type II 
• Let w be a Gauss word and G(w) be an interlacement graph 

associated with w, then S(Gw) = <x, y> is a vector associated 
with G(w) where x denotes the number of nodes of G(w) 
and y denotes the number of edges of G(w). 

 

 

 

 

 

Proposition 5. For Gauss words w and w’ the following holds: 

1. If w ⇒II↑ w’ then S(Gw) = S(Gw) + <2, y> for y = 0, . . . , 2n + 1 

2. If w ⇒II↓ w’ then S(Gw) = S(Gw) − <2, y> for y = 0, . . . , 2n − 3  
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Lower bounds: type II 

Theorem 2. Let w = U1 . . . UnOn . . . O1 and w’= U1O1 . . . UmOm 
where |w| =2n and |w’| = 2m, then w ⇒∗

I w’ and the total 
number of transformations required to rewrite w to w’ is at least 
(n+m/2)-1 

Proof idea: 

• Let S(Gw) and S(Gw’ ) be the vectors associated with w and w’ 
respectively. Then S(Gw) = <n, n(n−1)/2> and S(Gw’) = <m,0>. 

• II↓ can reduce either the number of nodes in S(Gw) by 2 or 
the number of nodes by 2 and the number of edges by at 
most 2n−3 

• II↑ moves can increase either the number of nodes in S(Gw) 
by 2 or the number of nodes by 2 and the number of edges by 
at most 2n+ 1.  29 



• Define some local property to demonstrate that 
applications of II↓ II↑ is no better than applications of  

     II↑ II↓.  

• Compute the minimal number of steps required to reduce 
number of edges in S(Gw) from n(n−1)/2 to 0 and to 
increase the number of nodes of S(Gw) from 1 to m.  

• Finally we show that at least n−1/2 applications of type II↓ 
moves are required to reduce the number of edges of S(Gw) 
from n(n−1) 2 to 0 and at least m−1/2 applications of type II 
↑ moves to increase the number of nodes of S(Gw) from 1 
to m.  
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Lower bounds: type I and II 
Conjecture . Given two knot diagrams Ak ∈ A and Bk ∈ B with n-
crossings where n = 3k for some k ≥ 1, if Bk is reachable from Ak by a 
sequence of Reidemeister moves of types {I, II} then the number of 
moves required to transform Ak to Bk is at least (4n/3)− 2. 
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Lower bounds: type I and II 
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Example: K=2 



Summary 

Reachability Lower bound Upper bound 

Type I only n+m-2 n+m 

Type II only ((n+m)/2)-1 (n+m)/2 

Types I,II  ? n+m 

Type III, {I,III },{II,III} ? ? 

Result: Upper and Lower bounds on the number of transformations to 
reach one knot diagram (K1) from another (K2) by RMI and  RMII. 

n – is a number of crossings in a knot diagram K2  
m – is a number of crossings in a knot diagram K1  

Known bounds 
(unknotedness) 

Lower bound Upper bound 

Types I ,II and III n2   [Hass and Towik, 2010] 2cn where c=154[Suh, 2008]  
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