
On the length of knot transformations
via Reidemeister Moves I and II

Rafiq Saleh

(Supervisors: Dr. Alexie Lisitsa & Dr. Igor Potapov)

1

Partially funded by
• UKEPSRC grant EP/J010898/1: Automatic Diagram Generation
• Royal Society IJP grant: “Specification and verification of infinite state systems: focus on date”

Overview

• Background about Knot Theory
– Knots

– Knot transformations via Reidemeister moves I and II

– Main problems in knot theory.

• Finite representation of Knots
– String (Gauss words)

– Reidemeister moves as rewriting rules on Gauss
words

• Lower and upper bound on the length of
transformations via Rm of types I and II

2

Background

• Knot Theory is an interesting area in Mathematics
which is part of topology.

• The main object studied in Knot Theory is
mathematical knots.

– This object has many properties. Mathematicians
study different properties of knots and knot
transformations.

3

What is a knot?

 A knot is a simple closed curve in
three-dimensional space.

 An unknotted circle is the simplest

 trivial knot known as the unknot.

4

Knot transformations

Type I
Allows us to put in/take out a twist.

Type II
Allows us to lay one strand over another
and pull them apart.

Type III
Allows us to slide a strand of the knot from one
side of a crossing to the other.

Two knots are equivalent if and only if one can be obtained from the
other by a sequence of Reidemeister moves.

Reidemeister theorem [Reidemeister,1927]

5

?

=

K1 K2

 Algorithmic problems of knots

Equivalence

• Given two knot diagrams K1 and K2. Can K1 be
transformed into K2 by a sequence of Reidemeister
moves?

Unknottedness

• Given a knot diagram K1. Can K1 be transformed into the
unknot by a sequence of Reidemeister moves?

?

=

K1

6

Decidability and complexity

• Equivalence is decidable [Haken, 1961] but no
precise complexity is known.

• Unknottedness is decidable [Haken, 1961] and
in NP [Hass et al.,1997].

• For a knot diagram with n-crossings
– Lower bound = n

2
 [Hass and Towik, 2010]

– Upper bound =2
cn

 where c=15
4
[Suh, 2008]

7

Discrete representation of knots

Discrete representation of knots

1

2

3

Discrete representation of knots

1

2

3

Discrete representation of knots

O1U2O3U1O2U3

Gauss word

(O) going over

(U) going under
1

2

3

1 2 3 1 2 3

Shadow Gauss word

11

Basic definitions

• A Gauss word w is a data word over the alphabet Σ×N
where Σ = {U,O}, such that for every n ∈ N either |w|(U,n) =
|w|(O,n)= 0, or |w|(U,n)= |w|(O,n) = 1.

Example: O1U2O3U1O2U3 --> (O,1)(U,2)(O,3)(U,1)(O,2)(U,3)

• A shadow Gauss word w is a word over the alphabet N (i.e.
finite sequence of natural numbers) such that for every n ∈
N either |w|n = 0 or |w|n = 2.

Example: 1 2 3 1 2 3

12

• A cyclic shift sk with k ∈ N is a function sk : Σ
∗ → Σ∗ such that

for a word w ∈ Σ∗ where w = w1,...,wn, the cyclic shift of w is
defined as sk(w1, ...,wn) = wi’, ...,wn’ where w(i+k) (mod n) = wi’
for some i = 1, ..., n.

• Example: Let w= O1U2O3U1O2U3 the following are all cyclic

words of w.

s0(w)=O1U2O3U1O2U3

s1(w)= U2O3U1O2U3O1

s2(w)= O3U1O2U3O1U2

s3(w)= U1O2U3O1U2O3

S4(w)= O2U3O1U2O3U1

s0(w)=U3O1U2O3U1O2

13

1

2

3

• Let w and w be some Gauss words, w is equivalent to
w’ up to cyclic shift iff |w| = |w’| = n such that ∃k : 0
≤ k < n and w = sk(w’).

• Let w = (a1, b1), · · ·, (an, bn) where ai ∈ {O,U} and bi ∈
[1, · · · , n], w is equivalent to w’ up to renaming of
labels iff there exists a bijective mapping r: [1, · · · , n]
→ [1, · · · , n] such that w=(a1,r(b1)), · · · ,(an,r(bn)).

• By [w]c and [w]r we denote a c-equivalence classes
and an r-equivalence classes of w respectively. 14

Knot rewriting

15

xOiOjyUjUi ↔ xy

y

x

y

x

16

Formulation of Reidemeister moves
as string rewriting rules

• Type I (or type II) increase is denoted by I↑ (or II↑ respect.)
and type I (or type II) decrease is denoted by I↓ (or II↓
respectively).

2.1 xOiOjyUjUi ↔ xy
2.2 xOiOjyUiUj ↔ xy

1.1 xUiOi ↔ x
1.2 xOiUi ↔ x

Knot transformations as rewriting of Gauss words:

Result: Formalized and minimized a set of rules sufficient for rewritings

17

Reachability properties of
Reidemeister moves

18

w

w’

w’’’

w’’

* *

* *

⇒R Locally
Confluent

⇒R Globally
confluent

w

w’

w’’’

w’’

* *

• Newman’s Lemma. If a relation ⇒R is locally confluent and
has no infinite rewriting sequences then ⇒R is (globally)
confluent.

• Let w be a Gauss word and R ∈ {{I↓}, {II↓}, {I↓,II↓}}, then
w is reducible iff there exists a word w’ such that w ⇒∗

R w’.

• w’ is called R-reduct of w (denoted by ReductR(w)) if w’ is
not reducible by ⇒R respectively

19

Reachability by type I

Proposition 1. Let R = {I↓}, the relation ⇒R over Σ is
confluent.

Proof idea:

20

• ⇒R is locally confluent.
Assume that w ⇒R w’ and w ⇒R w’’ for some word w. Let w =
xaybz where a, b ∈ {OiUi, UjOj} for some i,j≥1. Then w = xaybz
⇒R xybz = w’ and w = xaybz ⇒R xybz = w’’. Now we have
w’⇒R xyz and w’’ ⇒R xyz

• Any sequence w1 ⇒R w2, . . . ,⇒R wn will terminate .
• By Newman’s lemma, ⇒R is a confluent.

Reachability by type I

Proposition 2. Let w,w’∈ Σ∗c and R = {I↓}, if w ⇒∗
{I} w’ then

ReductR(w) =ReductR(w’).

Proof

• Suppose that w⇒∗
R w’. Then w⇒∗

R ReductR(w) and
w’⇒∗

R ReductR(w’).

• It follows that w ⇒∗
R ReductR(w’). By Proposition 1

ReductR(w) = ReductR(w’).

• Corollary 1. If w⇒∗
I w’ then w⇒∗

{I↓} Reduct {I↓}(w’) ⇒∗
{I↑} w’.

21

Reachability by type I

Proposition 3. Given two Gauss words w and w’ where |w| =
2n and |w’| =2m, if w ⇒∗

I w’ then the total number of
transformations sufficient to rewrite w to w’ is at most n+m.

Proof

• This is the total number of transformations in the sequence
w ⇒{I↓} wi, . . . ,⇒ {I↓} Reduct {I↓} (w’)⇒{I↑}wj, . . . ,⇒ {I↑} w’
obtained from Corollary 1. Since type I can increase or
decrease the size of a Gauss word by ±2, then the number
of transformations sufficient to reach Reduct{I↓}(w’) from w
is at most n and no more than m to reach w’ from
Reduct{I↓}(w’).

22

Upper bounds of types I and II

Reachability Upper bound

Type I only n+m

Type II only (n+m)/2

Types I,II n+m

Result: Upper bounds on the number of transformations to
reach one knot diagram (K1) from another (K2) by RMI, RMII, RM I&II.

n – is a number of crossings in a knot diagram K2
m – is a number of crossings in a knot diagram K1

23

Lower bound: type I

Given a Gauss word w, we associate a non-negative integer
vector S(w) = <x, y> with w where x denote the number of
adjacent pairs of OU and UO in w and y denote the number of
adjacent pairs of UU and OO in w.

Example.

• Given w = U1U2U3U4O4O3O2O1 and w’=U1O1U2O2U3O3U4O4

• Let S1 and S2 be two vectors associated with w and w
respectively. Then S1 = <2,6> and S2 = <8, 0>.

• I↑ correspond to the addition of two symbols of the form
UO or OU and type I ↓ will correspond to the deletion of
the symbols UO or OU

24

Lower bound: type I

Proposition 4. For Gauss words w and w’ the following holds:
1. If w ⇒I↑ w’ then either S(w’) = S(w) + <2, 0> or S(w) = S(w’) + <0, 2>

2. If w ⇒I↓ w’ then either S(w’) = S(w) − <2, 0> or S(w) = S(w’) − <0, 2>

Proof idea:

• The values of S(w’) depend on where the symbols UO or OU
are inserted in w.

• w = OOx, w’= OUOOx and S(w’) = S(w) + <2, 0>.

• w = UOx, w’ = UUOOx and S(w’) = S(w) + <0,2>.

• w = OUOOx, w’= OOx and S(w’) = S(w) - <2, 0>.

• w = UUOOx, w’ = UOx and S(w’) = S(w) - <0,2>.

25

Lower bound: type I

Theorem 1. Let w = U1 . . . UnOn . . . O1 and w’= U1O1 . . . UmOm
where |w| =2n and |w’| = 2m, then w ⇒∗

I w’ and the total
number of transformations required to rewrite w to w’ is at least
n+m-2

Proof idea:

• Let S(w) and S(w’) be the vectors associated with w and w’
respectively.

• By Definition, S(w) = <2,2(n -1)> and S(w’) = <2m, 0>.

• Application of type I↓ to w can only reduce either the value of
first component or the value of the second component of S(w)
by 2 and application of type I↑ moves can only increase
either the value of first component or the value of the second
component of S(w) by 2 (Proposition 4). 26

• Therefore to transform w to w’, we will need to use at
least n-1 applications of type I↓ moves to reduce the
value of first component of S(w) from 2(n-1) to 0 and
at least m-1 applications of type I↑ moves to
increase the value of second component of S(w) from
1 to 2m.

27

Lower bound: type II
• Let w be a Gauss word and G(w) be an interlacement graph

associated with w, then S(Gw) = <x, y> is a vector associated
with G(w) where x denotes the number of nodes of G(w)
and y denotes the number of edges of G(w).

Proposition 5. For Gauss words w and w’ the following holds:

1. If w ⇒II↑ w’ then S(Gw) = S(Gw) + <2, y> for y = 0, . . . , 2n + 1

2. If w ⇒II↓ w’ then S(Gw) = S(Gw) − <2, y> for y = 0, . . . , 2n − 3

28

Lower bounds: type II

Theorem 2. Let w = U1 . . . UnOn . . . O1 and w’= U1O1 . . . UmOm
where |w| =2n and |w’| = 2m, then w ⇒∗

I w’ and the total
number of transformations required to rewrite w to w’ is at least
(n+m/2)-1

Proof idea:

• Let S(Gw) and S(Gw’) be the vectors associated with w and w’
respectively. Then S(Gw) = <n, n(n−1)/2> and S(Gw’) = <m,0>.

• II↓ can reduce either the number of nodes in S(Gw) by 2 or
the number of nodes by 2 and the number of edges by at
most 2n−3

• II↑ moves can increase either the number of nodes in S(Gw)
by 2 or the number of nodes by 2 and the number of edges by
at most 2n+ 1. 29

• Define some local property to demonstrate that
applications of II↓ II↑ is no better than applications of

 II↑ II↓.

• Compute the minimal number of steps required to reduce
number of edges in S(Gw) from n(n−1)/2 to 0 and to
increase the number of nodes of S(Gw) from 1 to m.

• Finally we show that at least n−1/2 applications of type II↓
moves are required to reduce the number of edges of S(Gw)
from n(n−1) 2 to 0 and at least m−1/2 applications of type II
↑ moves to increase the number of nodes of S(Gw) from 1
to m.

30

Lower bounds: type I and II
Conjecture . Given two knot diagrams Ak ∈ A and Bk ∈ B with n-
crossings where n = 3k for some k ≥ 1, if Bk is reachable from Ak by a
sequence of Reidemeister moves of types {I, II} then the number of
moves required to transform Ak to Bk is at least (4n/3)− 2.

31

Lower bounds: type I and II

32

Example: K=2

Summary

Reachability Lower bound Upper bound

Type I only n+m-2 n+m

Type II only ((n+m)/2)-1 (n+m)/2

Types I,II ? n+m

Type III, {I,III },{II,III} ? ?

Result: Upper and Lower bounds on the number of transformations to
reach one knot diagram (K1) from another (K2) by RMI and RMII.

n – is a number of crossings in a knot diagram K2
m – is a number of crossings in a knot diagram K1

Known bounds
(unknotedness)

Lower bound Upper bound

Types I ,II and III n2 [Hass and Towik, 2010] 2cn where c=154[Suh, 2008]

33

