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Overview

 Background about Knot Theory
— Knots
— Knot transformations via Reidemeister moves | and |l
— Main problems in knot theory.

* Finite representation of Knots

— String (Gauss words)

— Reidemeister moves as rewriting rules on Gauss
words

 Lower and upper bound on the length of
transformations via Rm of types | and Il



Background

* Knot Theory is an interesting area in Mathematics
which is part of topology.

* The main object studied in Knot Theory is

mathematical knots.

— This object has many properties. Mathematicians
study different properties of knots and knot

transformations.



What is a knot?

* A knotis a simple closed curve in
three-dimensional space.

» An unknotted circle is the simplest
trivial knot known as the unknot.




Knot transformations

Reidemeister theorem [Reidemeister,1927]

Two knots are equivalent if and only if one can be obtained from the
other by a sequence of Reidemeister moves.

Type | k)
Allows us to put in/take out a twist. J/
Type ~
Allows us to lay one strand over another D
and pull them apart. ~

Type Il \6/ \>/
Allows us to slide a strand of the knot from one /\
/ \ N\

side of a crossing to the other.



Algorithmic problems of knots

Equivalence
K1 K2

- Given two knot diagrams K1 and K2. Can K1 be
transformed into K2 by a sequence of Reidemeister
moves?

Unknottedness '
K1

- Given a knot diagram K1. Can K1 be transformed into the
unknot by a sequence of Reidemeister moves? 6



Decidability and complexity

e Equivalence is decidable [Haken, 1961] but no
precise complexity is known.

 Unknottedness is decidable [Haken, 1961] and
In NP [Hass et al.,1997].

* For a knot diagram with n-crossings
— Lower bound = n’ [Hass and Towik, 2010]
— Upper bound =2"" where c=154[Suh, 2008]



Discrete representation of knots

-




Discrete representation of knots




Discrete representation of knots




Discrete representation of knots

(O) going over

3 (U) going under
1
— — 0,U,0,U,0,U,
Gauss word
| ﬂ

123123

Shadow Gauss word
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Basic definitions

is a data word over the alphabet 2xN
where 2 = {U,0}, such that for every n €N either [w] =

[Wlion=0,0r [w]y.=IW]gn,=1
Example: O,U,0,U,0,U; -->(0,1)(U,2)(0,3)(U,1)(0,2)(U,3)

is a word over the alphabet N (i.e.
finite sequence of natural numbers) such that for every n €
N either [w| =0or [w] = 2.

Example: 123123
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with k €N is a function s, : 2* - 2” such that
foraword w €2*where w = w,,...,w,, the cyclic shift of wis
defined as s, (wy, ...,w,) =w/, ...,w, where w;,,, (mod n) = w/
forsomei=1,..., n.

* Example: Let w= 0,U,0,U,0,U, the following are all cyclic
words of w.
So(w)=0,U,0,U,0,U,
s,(w)=U,03U,0,U;0, . 1
s,(w)=0,U,0,U,0,U,
s3(w)=U,0,U;0,U,0,
S,(w)=0,U;0,U,0,U,
So(w)=U;0,U,0,U,0,



e [et wand w be some Gauss words,
iff [ w|] = [w’[ =n such that Jk : O
<k<nandw = s (w’).

* letw=(a, b,), -+ (a, b,) wherea, E{O,U} and b, €
[, ---, n],
iff there exists a bijective mapping r: [1, - - -, n]
- [1, - - -, n] such that w=(a,r(b,)), - - - ,(a,r(b,)).

* By [w].and [w]. we denote a c-equivalence classes
and an r-equivalence classes of w respectively.



Knot rewriting

* Let X denote a finite set of variables
and 2={(0, i) | iel} U{(U,i ]| i€}
where I is a finite set.

* Foranalphabet Z, the language of
all cyclic words over 2 is defined as

Se=2\=={w].|w €57 x0,0yUU; <> xy

* A Gauss string rewriting system T as a tuple (X,2,R), where R
is a set of rewriting rules of the form | <> r such that |, r&
(2 UX):_and var(l) = var(r) where var(l) (or var(r)) denotes

the set of variables in | (or in r respectively).
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LetR={t, t,, ..., t } denote the set of rewriting rules and let
tER,

* *
a one-step rewriting relation =,& Zcxzcwhere t=1<>ris

defined as follows:

. w =, w iff 3o from (ZUX):e ZZ and [wl, = I and [w],
=roor[w].=roand[w’],.=lo.
p=Uier=4

The reflexive transitive closure of =y is denoted by :;
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Formulation of Reidemeister moves
as string rewriting rules

Knot transformations as rewriting of Gauss words:
Result: Formalized and minimized a set of rules sufficient for rewritings

/QH/\HD\ 1.1 xUO, <> x

Reidemeister Type I move 1.2 X O,-U i X

7 N
) H> < 4 ( 2.1 X0,0yUU, <> xy
Reidemeister Type Il move 2.2 X0, ij U U/ Xy

* Type |l (or type ll) increase is denoted by I]> (or |I]* respect.)
and type | (or type ll) decrease is denoted by |, (or I,
respectively).
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Reachability properties of
Reidemeister moves

* Arelation = is said to be locally confluent iff for all w, w’
and w”in 2 , if w = w and w = w”, then there exist w™”’

in Z such that w’ =", w”” and w” =%, w””

=, Locall \ / \ / =, Globally
Confluent confluent

18



* Newman’s Lemma. If a relation = is locally confluent and
has no infinite rewriting sequences then =,is (globally)
confluent.

 Letw beaGausswordand R €{{Id/}, {lI\}, {I{,6IId}} then
w is reducible iff there exists a word w” such that w =", w’.

* w’is called R-reduct of w (denoted by Reduct,(w)) if w’is
not reducible by =, respectively

19



Reachability by type |

Proposition 1. Let R = {I{/}, the relation =, over J is
confluent. xaybz —*— xybz

g,l lg;

Proof idea: xayz > xyz

* =;islocally confluent.
Assume that w =, w”and w =, w” for some word w. Let w =
xaybz where a, b €{O,U, U0} for some i,j21. Then w = xaybz
=, Xxybz = w’ and w = xaybz =, xybz = w”. Now we have
w’= xyz and w”’ =, xyz

* Anysequence w, =, W,, ..., W, will terminate .
* By Newman’slemma, =;is a confluent. 20



Reachability by type |

Proposition 2. Let w,w’€ 2" and R = {I{ }, if w =", w’ then
Reduct,(w) =Reduct,(w’).

Proof

* Suppose that w=", w’. Then w=", Reduct,(w) and
w’=", Reduct,(w’).

* It follows that w =%, ReductR(w’). By Proposition 1
Reduct,(w) = Reduct,(w’).

* Corollary 1. If w=", w’ then w=",  ,Reduct ,  ,(w’) =71, W"
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Reachability by type |

Proposition 3. Given two Gauss words w and w’ where [w/[ =
2n and [w’[ =2m, if w =% w’ then the total number of
transformations sufficient to rewrite w to w’ is at most n+m.

Proof

* This is the total number of transformations in the sequence
W =W, ..., =g Reduct (W) =W, ..., =20 W
obtained from Corollary 1. Since type | can increase or
decrease the size of a Gauss word by #2, then the number
of transformations sufficient to reach Reduct,  ,(w’) from w
is at most n and no more than m to reach w’ from
Reduct,  ,w’).
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Upper bounds of types | and |

Result: Upper bounds on the number of transformations to
reach one knot diagram (K1) from another (K2) by RMI, RMII, RM I&lI.

Reachability Upper bound

Type | only n+m
Type Il only (n+m)/2
Types Ll n+m

n —is a number of crossings in a knot diagram K2
m — is a number of crossings in a knot diagram K1
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Lower bound: type |

Given a Gauss word w, we associate a non-negative integer
vector S(w) = <x, y> with w where x denote the number of
adjacent pairs of OU and UO in w and y denote the number of
adjacent pairs of UU and OO in w.

Example.

* Givenw =U,U,U;U,0,0,0,0, and w’=U,0,U,0,U,;0,U,0O,

e letS1 and S2 be two vectors associated with w and w
respectively. Then S1 =<2,6> and S2 = <8, 0>.

* | correspond to the addition of two symbols of the form
UO or OU and type | {, will correspond to the deletion of
the symbols UO or OU
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Lower bound: type |

Proposition 4. For Gauss words w and w’ the following holds:
1. If w =, w’then either S(w’) = S(w) + <2, 0> or S(w) = S(w’) + <0, 2>
2. Ifw =, w’then either S(w’) = S(w) - <2, 0> or S(w) = S(w’) - <0, 2>
Proof idea:

* The values of S(w’) depend on where the symbols UO or OU
are inserted in w.

e w=00x, w=0UOOx and S(w’) = S(w) + <2, 0>.
e w=UOx, w =UUOOx and S(w’) = S(w) + <0,2>.
e w=0UOOx, w'=00x and S(w’) = S(w) - <2, 0>.
e w=UUOOx, w =UOx and S(w’) = S(w) - <0,2>.
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Lower bound: type |

Theorem 1. Lletw=U,...U,0,...0,and w=U,0,...U, 0O,
where [w| =2n and [w’| =2m, then w =*,w’ and the total
number of transformations required to rewrite w to w’ is at least
n+m-2

Proof idea:

 LetS(w)and S(w’) be the vectors associated with w and w’
respectively.

* By Definition, S(w) =<2,2(n -1)> and S(w’) =<2m, 0>.

* Application of type I, to w can only reduce either the value of
first component or the value of the second component of S(w)
by 2 and application of type Il moves can only increase
either the value of first component or the value of the second
component of S(w) by 2 (Proposition 4). 26



e Therefore to transform w to w’, we will need to use at
least n-1 applications of type I\, moves to reduce the
value of first component of S(w) from 2(n-1) to 0 and
at least m-1 applications of type Il moves to
increase the value of second component of S(w) from
1 to 2m.



Lower bound: type |

 Letw be a Gauss word and G(w) be an interlacement graph
associated with w, then S(G ) = <x, y> is a vector associated
with G(w) where x denotes the number of nodes of G(w)
and y denotes the number of edges of G(w).

1

N N
12312344

NI

© C
Proposition 5. For Gauss words w and w’ the following holds:

1. Ifw =, w’thenS(G,)=5(G,)+<2,y>fory=0,...,2n+1
2. Ifw =, w'then 5(G,) = 5(G,) =<2, y>fory=0,...,2n -3

8



Lower bounds: type Il

Theorem 2. Letw=U,...U,0,...0,and w=U,0,...U,0O,
where [w| =2n and [w’[ =2m, then w =*,w’ and the total
number of transformations required to rewrite w to w’ is at least
(n+m/2)-1

Proof idea:

* LetS(G,)and S(G,, ) be the vectors associated with w and w’
respectively. Then 5(G,,) = <n, n(n-1)/2> and S(G,,) = <m,0>.

* [I{ can reduce either the number of nodes in 5(G,,) by 2 or
the number of nodes by 2 and the number of edges by at
most 2n-3

* /I moves can increase either the number of nodes in 5(G,))
by 2 or the number of nodes by 2 and the number of edges by
at most 2n+ 1. 29



* Define some local property to demonstrate that
applications of /I{, I is no better than applications of

I 1.
e Compute the minimal number of steps required to reduce

number of edges in S(G,,) from n(n-1)/2 to 0 and to
increase the number of nodes of $(G,) from 1 to m.

* Finally we show that at least n-1/2 applications of type /I,
moves are required to reduce the number of edges of S(G,)
from n(n-1) 2 to 0 and at least m-1/2 applications of type /I
I moves to increase the number of nodes of 5(G,) from 1
to m.



Lower bounds: type | and |

Conjecture . Given two knot diagrams A, €A and B, € B with n-
crossings where n = 3k for some k > 1, if B, is reachable from A, by a
sequence of Reidemeister moves of types {/, I/} then the number of
moves required to transform A, to B, is at least (4n/3)- 2.
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Exagn\ple: K=2 Q | m
@ jw{\/) ‘*8

O



Summary

Result: Upper and Lower bounds on the number of transformations to
reach one knot diagram (K1) from another (K2) by RMI and RMII.

Type | only n+m-2 n+m
Type Il only ((n+m)/2)-1 (n+m)/2
Types |, ? n+m
Type I, {LHI L1111} ? ?

Known bounds Lower bound Upper bound
(unknotedness)

Types | ,Il and Il n2 [Hass and Towik, 2010] 2" where c=15*[Suh, 2008]

n —is a number of crossings in a knot diagram K2

m — is a number of crossings in a knot diagram K1 >



