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This talk

• Models of (boolean-valued) multi-thread programs.
Context-sensitive synchronization is undecidable.
–2-stacks PDA is Turing complete.

Lots of models with restrictions for decidability. 
–Context-bounded, atomicity, locking protocols, 

no synchronization. 
Typical techniques. Reduction to 1-stack PDS 
with infinite stack alphabet. 

• Aim. Extend WSTS framework to (1-stack) PDS with 
WQO stack alphabet (e.g., Nk) to show coverability.

Example. Coverability of RVASS (POPL12),
Multi-set PDS (CONCUR09) are decidable.



Classical coverability example. VAS (Perti net) 
• VAS is a transition system on vectors Nk with 

transition rules m → n if m≧n1 and n = m - n1 + n2 .

• Th. Coverability of VAS (Perti net) is decidable.
Given m, n, whether ∃n’. m →* n’ and n’≧n.

• Two methodology
Post: Acceleration (classical Karp-Miller tree) 

Pre: Monotonic WSTS 

Acceleration (2,ω)

m=(1,1) (2,0)

*

* <
(2,0)

(2,1)
*

*
m=(1,1)

n=(2,4) : yes
n=(3,4) : no



Well-quasi-ordering (WQO)

• Def. A QO (A,≦) is WQO (well-quasi-ordering) if,  for 
each infinite sequence a1 , a2 , a3 , … in A, there exist i, 
j such that i < j and ai ≦ aj .

• Example.
(N,≦)   where ≦ is less-than-equal
(A,＝)    where A is a finite set. 
(Nk, ≦) where ≦ is element-wise less-than-equal

• Lemma. Assume (A,≦), (A1 ,≦1 ), (A2 ,≦2 ) are WQO.
Dickson’s lemma  (A1×A2, ≦1×≦2) is a WQO.
Higman’s lemma  (A*, embedding) is a WQO.



Well structured transition system (WSTS) 

• Def. WSTS M = ((P,≦), s0 , Δ) consists of 
(P,≦) WQO 
s0 ∈P        the initial state
Δ⊆P×P  transition 

• Def. A transition system ((P,≦), s0 , Δ) is monotonic 
if  s1 → s2 ∧ s1 ≦ t1 imply  ∃t2 . t1 → t2 ∧ s2 ≦ t2

• Def. pre(s)  = {t | t → s},       post(s) = { t | s → t} 
pre*(s) = {t | t →* s},      post*(s) = { t | s →* t} 
pre*(I) = {t | t →* s∈I},  post*(I) = {t | s →* t, s ∈I} 
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Coverability of monotonic WSTS by ideals

• Def. Let (A,≦) be a QO. I ⊆ A is 
upward-closed (ideal), if x∈I ∧ x ≦ y ⇒ y∈I. 
downward-closed, if x∈I ∧ y ≦ x ⇒ y∈I. 

denoted I↑= I and I↓= I, respectively.

• Assumption: For a WSTS (P, s0 , Δ), min(pre(I)) can 
be effectively computed for each ideal I.

The set of minimal elements of an ideal is finite.

• Th. Coverability (reachability to ideal I) is decidable. 
Proof. Reduced to whether s0∈ pre*(I). Since ⊆ is a 
WFO on ideals,  pre*(I) = ∪i prei(I) converges.



Difficulties of extensions to PDS

• WSTS techniques cannot be applied directly to PDS.
Tempting to apply word embedding on stack 
contents, which destroys monotonicity. 
w ≦ w’ as element-wise comparison (i.e., |w|=|w’|), 
which will be neither WQO nor WFO.

• Our idea. Combine classical P-automata techniques 
to acceleration / WSTS.

Completeness. P-automata techniques for PDS with 
infinite states/stack alphabet (ignoring termination).
Termination analysis. e.g., RVASS, Multi-set PDS



Remark

• Most of multi-thread models has non-standard pop 
rules (i.e., <p,γ1γs > → <q,γ>)

If stack alphabet is finite, possible to reduce 
standard pop rules. 
With infinite stack alphabet, such conversion 
introduces infinite states.

• Revisit P-automata construction for infinite states / 
stack alphabet with non-standard pop rules. 

We ignore termination (but observe convergence).



Step 1. P-Automaton (post*)
• Post* automaton accepts reachable configurations.

Starting an initial automata, e.g., 
Apply saturation rules until convergence.
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P-automaton example (post*)



Step 1’. P-Automaton (pre*)
• Pre* automaton accepts predecessor configurations.

Starting an initial automata, e.g., 
Apply saturation rules until convergence.
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Step 2. Coverability and P-automata minimization

• Minimization rules for coverability of monotonic PDS.

• Th. Coverability from (p,w) to (q,v) ∈ P×Γ* 
⇔ (q.v)∈post*m ({(p,w)})↓, (p.w)∈pre*m ({(q,v)}↑)

• At this level, we still do not require termination. 
Post* : take downward closure of reachables. 
Pre* : take upward closure of targets. 
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Step 3. Analysis on terminating cases

• Termination techniques for monotonic PDS
Post*: Acceleration (for Nk)

Pre* : Ideal representation to compact

• Examples. finite states & WQO stack alphabet, Multi- 
set PDS, RVASS (finite states & Nk stack alphabet).
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WQO over D implies 
WFO ⊃ over { X↑| X⊆D }



Ex1. PDS with finite states, WQO-stack alphabet
• PDS (P, (Γ,≦),Δ) has

finite states, WQO stack alphabet
without non-standard pop rules.

• Example. ({p0 ,p1 ,p2 },N2,Δ), reaching to <p0 ,≧(0,0)*>

{p2 }×(N2)*

ψ1 twice

Pre* is applied



Def. PDS with WQO-stack alphabet

• Def. PDS with WQO-stack alphabet (P, (Γ,≦),Δ) is   
P : a finite set (of control states) 
(Γ,≦) : WQO (stack alphabet) 
Δ⊆P×P×Pfun(Γ,Γ≦2) : a finite set of transitions, 
denoted <p,γ> → <q,ψ(γ)>

where Pfun(A,B) is the set of partial functions (A to B). 

• Assumptions. We assume
ψ is monotonic. 
For each ideal I in Γ≦2, min(ψ-1(I)) is computable.



Ex 2. MPDS (WQO states, finite stack alphabet)

• Multi-set PDS ((P,≦),Γ,Δ) has
WQO states = finite control states × vectors (Nk)
finite stack alphabet
without non-standard pop rules.

• Saturation and minimization rules in pre*
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Multi-set PDS example (pre*)
• P = {a,b,c} ×N, Γ= {α,β}

• <α0,ε> will not cover <c0,ε>

With state compaction

Not added



Ex 3. RVASS (finite states, WQO stack alphabet)

• RVASS (P, (Nk,≦), Δ) has 
finite states, stack alphabet = finite  states ×Nk

with simple-push and non-standard pop rules.

Post* is applied
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Conclusion
• We showed 

P-automata construction works even for PDS with 
infinite states/stack alphabet.
Minimization rules for coverability
Acceleration for post*, Ideal compaction for pre* 
(when finite states & WQO stack alphabet)
–State reachability of RVASS is extended to 

coverability, Multi-set PDS coverability

• Future work. More examples to establish a general 
proof framework for coverability.

Dense Timed Pushdown Automata (DTPDA, 
LICS12) with certain extensions.
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