Efficient Probabilistic Model Checking of Systems with Ranged Probabilities

Khalil Ghorbal^{1,2} Parasara Sridhar Duggirala^{1,3} Franjo Ivančić¹ Vineet Kahlon¹ Aarti Gupta¹

¹ NEC Laboratories America, Inc.

² now with Carnegie Mellon University

³ now with University of Illinois at Urbana-Champagne

September 18th, 2012 Reachability Problems

Ghorbal, Duggirala, Ivančić, Kahlon, and Gupta

Experiments

Problem Statement

Analyze real-world stochastic systems

- Large systems contain many components (including third-party)
- Full formal system description not available
- *But:* Execution logs are easily generated

Bounded Properties

Unbounded Properties 00

Experiments

State-of-the-art solution: Black Box Technique

Black box techniques

- No system model
- Qualitative and quantitative properties

Learning Models

- Many applications need models (for example: anomaly detection)
- Bootstrapping to learn stochastic models

Can we use approximate learned models for sound analysis?

RP2012

÷											
		-						÷			
5	5		÷	9	u	u	6	5	5	U	

Motivation

Analyze real-world stochastic systems

- Follow model based approach
- Analysis based on the (finite) set of execution logs generated at runtime (usually available for debugging purposes)
- Try to bridge the gap between the model and the system under analysis
- Need to provide a way of capturing confidence about the learned model

Overview

- Phase I: Learning: set of logs → Stochastic Model (*Interval-Valued* Discrete-Time Markov Models)
- Phase II: Model Checking (sound quantitative analysis ... of the model !)

Why Interval Discrete Time Markov Chains (IDTMC) ?

- Finite set of logs leads to approximate transition probabilities \pm error due to the learning technique.
- To quantify the confidence in the model we use interval transition probabilities where the width of interval is related to the confidence parameters of the learning technique.

Figure : Small IDTMC Example

Ghorbal, Duggirala, Ivančić, Kahlon, and Gupta

ï	÷.,		-1				
	τι	ro			τ		

Unbounded Properties

Experiments

Outline

- 2 Bounded Properties• DTMC
 - IDTMC
- Unbounded PropertiesDTMC
 - IDTMC

ī	n	tı	'n	d		c	ti	0	n	
L		u	U	u	u	c	u	U		

Unbounded Properties 00

Experiments

Definitions

DTMC

A DTMC is a 4-tuple:
$$\mathbf{M} \stackrel{\text{def}}{=} (S, s_0, P, \ell)$$
:

- S is a finite set of states,
- $s_0 \in S$ the initial state,
- P a transition probability matrix,
- ℓ : S → 2^{AP} is a labelling function, ℓ(s_i) gives the set of atomic propositions a ∈ AP that are valid in s,
- AP denotes a finite set of atomic propositions.

The component p_{ij} of the square matrix P denotes the transition probability between state s_i and state s_j :

$$P[X_t = s_j \mid X_{t-1} = s_i]$$

Int	roc	luc	tic	n

Unbounded Properties

Experiments

Example

Figure : DTMC representation

Bounded Properties

Unbounded Properties 00

Experiments

Probabilistic Computation Tree Logic (PCTL)

$$\begin{split} \phi &::= true \mid a \mid \neg \phi \mid \phi \land \phi \mid P_{\bowtie \gamma}[\psi] \\ \psi &::= \mathcal{X}\phi \mid \phi \ \mathcal{U}^{\leq k}\phi \end{split}$$

- a ∈ AP
- $\bullet \bowtie \in \{<,\leq,>,\geq\}$
- $\gamma \in [0,1]$ a threshold probability
- $k \in \mathbb{N} \cup \{+\infty\}$ (bounded and standard until)

Unbounded Properties 00

Experiments

Semantics of the P operator

Let $Prob_M(s, \psi)$ denote the probability that a random path σ in M starting from s ($\sigma[0] = s$) satisfies ψ , i.e. $\sigma \models \psi$.

$$s \models P_{\bowtie \gamma}[\psi] \iff \operatorname{Prob}_M(s,\psi) \bowtie \gamma$$

for an IDTMC:

$$\mathbf{M}, \mathbf{s} \models \phi \qquad \iff \forall \mathbf{M} \in \mathbf{M} : \mathbf{M}, \mathbf{s} \models \phi \ .$$

• Verifying PCTL properties over IDTMCs is known to be an **NP-hard problem.**

Bounded Properties

Unbounded Properties

Experiments

Model Checking over a DTMC

 ${\mathcal X}$ property: $\psi = {\mathcal X} \phi$

$$Prob_M(s_i, \mathcal{X}\phi) = \sum_{s_j \models \phi} p_{ij}$$

},

 \mathcal{U} property: $\psi = \phi_1 \ \mathcal{U}^{\leq k} \phi_2$

•
$$S_{yes} \stackrel{\text{def}}{=} \{s_i \mid s_i \models \phi_2\},$$

• $S_{no} \stackrel{\text{def}}{=} \{s_i \mid s_i \not\models \phi_1 \land s_i \not\models \phi_2$
• $S_{maybe} \stackrel{\text{def}}{=} \{s_i \mid s_i \not\models \phi_1 \land s_i \not\models \phi_2\}.$

• If
$$s_i \in S_{no}$$
, then $Prob_M(s_i, \psi) =$

Experiments

Model Checking over a DTMC (Cont'd)

Let
$$v_k[i] \stackrel{\text{def}}{=} Prob_M(s_i, \psi, k)$$
, then

$$v_k[i] = \sum_{j=1}^n p_{ij} v_{k-1}[j]$$

=
$$\sum_{j \in I_{maybe}} p_{ij} v_{k-1}[j] + \underbrace{\sum_{j \notin I_{maybe}} p_{ij} v_{k-1}[j]}_{b_i}$$

 $v_{k-1}[j]$ are known for $j \notin I_{maybe}$ (either 0 or 1).

$$v_k = P'v_{k-1} + b,$$

The square matrix P' is extracted from P such that: for all i such that $s_i \in S_{yes} \cup S_{no}$, we delete the *i*th row and the *i*th column.

÷									
	÷					C	÷		
5	-	۰.	9	u	u	~	۲	0	

Unbounded Properties 00

Experiments

Example

- $\mathbf{M} = (S, s_1, \mathbf{P}, \ell)$
- $S = \{s_1, s_2, s_3, s_4\}$
- *AP* = {*a*, *b*}
- s_1 is initial state

•
$$\ell(s_1) = \{b\}, \ \ell(s_2) = \{a\}, \ \ell(s_3) = \{a \land b\}, \ \ell(s_4) = \{b\}$$

$$P = \begin{bmatrix} 0 & 0.5 & 0.1 & 0.4 \\ 0.5 & 0 & 0 & 0.5 \\ 0 & 0.8 & 0.2 & 0 \\ 0.5 & 0.3 & 0.2 & 0 \end{bmatrix}$$

Ghorbal, Duggirala, Ivančić, Kahlon, and Gupta

Bounded Properties

Unbounded Properties

Experiments

Example (Cont'd)

•
$$P_{\leq \gamma}[b \ U^{\leq 2}(a \land b)]$$

• $S_{yes} = \{s_3\}, \ S_{no} = \{s_2\} \text{ and } S_{maybe} = \{s_1, s_4\}$

$$P' = \begin{bmatrix} 0 & 0.4 \\ 0.5 & 0 \end{bmatrix} \text{ and } b = (0.1, 0.2)^t$$
$$\begin{bmatrix} Prob_M(s_1, \psi) \\ Prob_M(s_4, \psi) \end{bmatrix} = \begin{bmatrix} 0.18 \\ 0.25 \end{bmatrix}$$

Extension to IDTMCs

Sample probability transition relation for IDTMC

$$P = \begin{bmatrix} 0 & [0.49, 0.51] & [0.09, 0.11] & [0.39, 0.41] \\ [0.49, 0.51] & 0 & 0 & [0.49, 0.51] \\ 0 & [0.79, 0.81] & [0.19, 0.21] & 0 \\ [0.49, 0.51] & [0.29, 0.31] & [0.19, 0.21] & 0 \end{bmatrix}$$

Analysis using Interval Arithmetic

$$\mathbf{v}_{k} = \mathbf{P'}\mathbf{v}_{k-1} + \mathbf{b}$$

Successive computation inherits from the loss of precision due to interval arithmetic

To overcome this loss of precision, in the bounded case, we use **affine arithmetic**

Ghorbal, Duggirala, Ivančić, Kahlon, and Gupta

ï	-	+		~	d		~	÷		~	-	
ł		L	ł	U	u	u	C	L	4	U	н	

Unbounded Properties 00

Experiments

Affine Forms

Interval Analysis Problem: Compute
$$x - x$$

[a, b] - [a, b] = [a - b, b - a] \supset [0, 0]

In AA, the interval [a, b] is represented using the affine expression:

$$\frac{a+b}{2} + \frac{b-a}{2}\epsilon_1,$$

 $\epsilon_1 \in [-1,1]$ is introduced to capture the uncertainty.

$$\hat{\boldsymbol{a}} \stackrel{\text{def}}{=} \alpha_0^{\boldsymbol{a}} + \alpha_1^{\boldsymbol{a}} \boldsymbol{\epsilon}_1 + \dots + \alpha_l^{\boldsymbol{a}} \boldsymbol{\epsilon}_l = \alpha_0^{\boldsymbol{a}} + \sum_{i=1}^l \alpha_i^{\boldsymbol{a}} \boldsymbol{\epsilon}_i,$$

- $\alpha_0^a, \ldots, \alpha_l^a$ are real coefficients (error weights).
- $\epsilon_1, \ldots, \epsilon_l$ are symbolic error variables.

Experiments

Affine Arithmetic

- \hat{a} and \hat{b} are two affine forms
- λ,ζ be two finite real numbers

Linear Operations

$$\hat{a} \pm \hat{b} \stackrel{\text{def}}{=} (\alpha_0^a \pm \alpha_0^b) + \sum_{i=1}^{l} (\alpha_i^a \pm \alpha_i^b) \epsilon$$
$$\lambda \hat{a} \stackrel{\text{def}}{=} \lambda \alpha_0^a + \sum_{i=1}^{l} (\lambda \alpha_i^a) \epsilon_i$$
$$\hat{a} + \zeta \stackrel{\text{def}}{=} (\alpha_0^a + \zeta) + \sum_{i=1}^{l} \alpha_i^a \epsilon_i$$

Model Checking IDTMC

Main idea

Split **P** into a central matrix P_c , and an interval matrix **E**, which encodes the uncertainty of the model: $\mathbf{P} = P_c + \mathbf{E}$

- Matrix P_c is stochastic (all rows sum up to 1) in our case
- The matrix **E** is represented using AA error terms

Thus, the equation for DTMC analysis $v_k = P'v_{k-1} + b$ becomes:

$$v_k(\epsilon) = (P'_c + E'(\epsilon))v_{k-1}(\epsilon) + (b + b(\epsilon))$$

The updated components of $v_k(\epsilon)$ are non-linear (polynomial) functions of the perturbations $(\epsilon_{ij})_{1 \le i,j \le n}$.

Combining AA and IA

Overapproximation

Split non-linear component computation of $v_k(\epsilon)$ into three parts:

- a constant value c_k
- $I_k(\epsilon)$ is the linear part of $v_k(\epsilon)$ using AA
- \Box_k is an IA-overapproximation of $v_k(\epsilon) (c_k + l_k(\epsilon))$

 $v_k(\epsilon) \in ilde{\mathsf{P}}_k \stackrel{\mathsf{def}}{=} c_k + l_k(\epsilon) + \Box_k$

$$c_{k} = P'_{c}c_{k-1} + b$$

$$l_{k}(\epsilon) = P'_{c}l_{k-1}(\epsilon) + E'(\epsilon)c_{k-1} + b(\epsilon)$$

$$\Box_{k} = P'_{c}\Box_{k-1} + \mathbf{E}'(\Box_{k-1} + \mathbf{I}_{k-1})$$

We still need to compute \Box_k : that is evaluate I_{k-1} . I_{k-1} contains component-wise wrapping interval bounds for $I_{k-1}(\epsilon)$.

Introduction	Bounded Properties	Unbounded Properties 00	Experiments
Computing	I_{k-1}		

• For each component of the *n*-dimensional interval-vector I_{k-1} :

$$\begin{array}{ll} \max / \min & \sum_{1 \leq i,j \leq n} \alpha_{ij} \epsilon_{ij} \\ \text{s.t.} & -e_{ij} \leq \epsilon_{ij} \leq e_{ij}, 1 \leq i,j \leq n \\ & \sum_{j=1}^{n} p_{c\,ij}' + \epsilon_{ij} = 1, 1 \leq i \leq n \end{array}$$
(LP)

- the feasible region is not empty for a normalized IDTMC
- any off-the-shelf LP solver can be used

Experiments

Specificity of learned IDTMC

- The matrix P_c is stochastic (rows sum up to 1),
- which makes $\sum_{j=1}^{n} \epsilon_{ij} = 0, 1 \le i \le n$
- \implies It turns out that under these assumptions, we need to only sort affine error weights to compute I_{k-1} (see next slide)
 - In fact: it can be done in linear time by reduction to *weighted median problem* (see paper)

Introduction	

Saturation

Lemma

Given a linear programming problem of the form of (LP), there exists a feasible maximizing solution that leaves at most one variable non-saturated. All other variables are positively or negatively saturated.

It is then sufficient to determine:

- the non-saturated index, say k
- $\bullet\,$ the set $\oplus\,$ of positively saturated variables
- $\bullet\,$ the set $\ominus\,$ of negatively saturated variables

The value of ϵ_k is then determined by

$$\epsilon_k = -\sum_{i\in\ominus\cup\oplus}\epsilon_i = \sum_{i\in\ominus}\epsilon_i - \sum_{i\in\oplus}\epsilon_i$$
.

Bounded Properties

Unbounded Properties $\bullet \circ$

Experiments

(unbounded) Until properties - DTMC

Fixpoint formulation:

$$v = P'v + b$$

Proposition

Let A be a square matrix of dimension $n \times n$ such that

•
$$\forall i, j, 1 \leq i, j \leq n, a_{ij} \in [0, 1]$$

•
$$\forall i, 1 \leq i \leq n, 0 < \sum_{j=1}^{n} a_{ij} \leq 1$$

•
$$\exists i, 1 \leq i \leq n, \sum_{j=1}^{n} a_{ij} < 1$$

Let I_n denote the identity matrix of dimension n. Then the matrix $A - I_n$ is invertible.

$$\implies$$
 Therefore $v = (I - P')^{-1}b$

Bounded Properties

Unbounded Properties $\circ \bullet$

Experiments

(unbounded) Until properties - IDTMC

Fixpoint formulation

$$c = P'_{c}c + b$$

$$l(\epsilon) = P'_{c}l(\epsilon) + E'(\epsilon)c + b(\epsilon)$$

$$\Box = P'_{c}\Box + \mathbf{E}'(\Box + \mathbf{I})$$

As for DTMCs, we derive c and $l(\epsilon)$ as follows:

$$c = (I - P'_c)^{-1}b$$
$$I(\epsilon) = (I - P'_c)^{-1}(E'(\epsilon)c + b(\epsilon))$$

and compute an overapproximation of \Box

$$(I - P_c' - \mathbf{E'})\Box = \mathbf{E'I}$$

Experiments

Smart Grid Management System

- Data collected for renewable energy sources (wind, solar)
- Fluctuations in demand and supply modeled as Markov chain

• Instead: We learned IDTMC and performed analysis

Unbounded Properties 00

Experiments

Smart Grid Management System (cont.)

	# Days	IA	AA+LP
P_1	7	[0.55, 1]	[0.83, 0.98]
P_2	7	[0.35, 1]	[0.70, 0.80]

Table : IA versus AA+LP

- $\begin{array}{l} P_1: \mbox{ What is the probability that within k days, the power grid will switch from high supply mode to low supply mode: $P[\frac{1}{2}\delta_M \leq \delta \leq \delta_M \ \mathcal{U}^{\leq k} 0 \leq \delta \leq \frac{1}{2}\delta_M]. \end{array}$
- $\begin{array}{l} P_2: \mbox{ What is the probability that within } k \mbox{ days, the power grid will} \\ \mbox{ switch from low supply mode to low demand mode:} \\ P[0 \le \delta \le \frac{1}{2} \delta_M \ \mathcal{U}^{\le k} \frac{1}{2} \delta_m \le \delta \le 0]. \end{array}$

Unbounded Properties

Experiments

Conclusion and Future Work

Conclusion

- Efficient computation of simple reachability properties over IDTMC.
- Exact propagation of first order error terms.

Future work

- The propagation of first order error terms allow witness generation.
- Extension to nested and multiple *P* operators.

Unbounded Properties

Experiments

Thank you for your attention!

Questions???

HSCC 2013 (part of CPSWeek 2013)

- Submission deadline: October 15th, 2012 (strict!)
- http://2013.hscc-conference.org