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Problem Statement

Analyze real-world stochastic

systems
0 Logs

@ Large systems contain

many components ShohE

(including third-party) System 1
e Full f.orn.wal system o= 8 5

description not available LT oo .

c Verification == GO O\ . o
o But: Execution logs are ey
: OO Model
easily generated
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State-of-the-art solution: Black Box Technique

Black box techniques

@ No system model

@ Qualitative and

. - o Logs
quantitative properties )
. System :
Learning Models 1
X X Black box technique D
@ Many applications need (ORI O
mOde|5| (f;’rtexi_mp)'ei Verification == CAf‘ 8 8:  %
anoma etection Lk
Y OO Model

@ Bootstrapping to learn
stochastic models

Can we use approximate learned models for sound analysis?
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Motivation

Analyze real-world stochastic systems

@ Follow model based approach

@ Analysis based on the (finite) set of execution logs generated
at runtime (usually available for debugging purposes)

@ Try to bridge the gap between the model and the system
under analysis

@ Need to provide a way of capturing confidence about the
learned model

Phase I: Learning: set of logs — Stochastic Model
(Interval-Valued Discrete-Time Markov Models)

@ Phase Il: Model Checking (sound quantitative analysis ... of
the model !)
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Why Interval Discrete Time Markov Chains (IDTMC) ?
o Finite set of logs leads to approximate transition probabilities
=+ error due to the learning technique.
@ To quantify the confidence in the model we use interval
transition probabilities where the width of interval is related to
the confidence parameters of the learning technique.

[0.29,0.31]

®

[0.69,0.71]

Figure : Small IDTMC Example
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Definitions

DTMC

A DTMC is a 4-tuple: M & (S, s0, P, 0):
@ S is a finite set of states,
@ sy € S the initial state,
@ P a transition probability matrix,

o (:S — 24P is a labelling function, £(s;) gives the set of
atomic propositions a € AP that are valid in s,

@ AP denotes a finite set of atomic propositions.

The component pj; of the square matrix P denotes the transition
probability between state s; and state s;:

P[Xt :S_] | th]_ :5,']
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Example

P43 P3,3

Figure : DTMC representation
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Probabilistic Computation Tree Logic (PCTL)

pu=truela| ¢ | PN | Poury[V]
)= X | o UG

e ac AP

o € {<, <, >, >}

@ 7 €[0,1] a threshold probability

@ k € NU{+o0} (bounded and standard until)
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Semantics of the P operator

Let Probp(s, 1)) denote the probability that a random path o in M
starting from s (¢0[0] = s) satisfies ¢, i.e. o = 1.

s | Py [¥] <= Probp(s,y) >y
for an IDTMC:
M;s = ¢ <= VMeM: Msk=¢ .

o Verifying PCTL properties over IDTMCs is known to be an
NP-hard problem.
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Model Checking over a DTMC

X property: ¢ = X¢
Probp(si, X¢) = Z Pij
si=¢
U property: 1 = ¢1 U=K¢»

® Syes def {si|si = ¢}

def

° no — {51 | Si I7£¢1A51 I7£¢2}1
def

° Smaybe = S \ (Syes U Sno)

o If s; € Syes, then Probp(si, ) = 1.

o If s; € Sy, then Probpy(s;, 1) = 0.
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Model Checking over a DTMC (Cont'd)

Let vk[] ProbM(s,,w, k), then

Vk[]—ZPqu 10
Z Pij Vk— 1[]]+ Z Pij Vk— 1[/]

./Elmaybe ngmaybe

b;

vik—1[j] are known for j & Imaype (either O or 1).

Vi = P/Vk,;[ + b,

The square matrix P’ is extracted from P such that: for all / such
that s; € Syes U Spo, we delete the ith row and the ith column.
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Example

M= (S,s,P,?¢)
5= {51,52,53,54}
AP = {a, b}

s1 is initial state

l(s1) = {b}, (s2) = {a}, £(s3) = {a A b}, U(sa) = {b}

0 05 01 04
05 0 0 05
0 08 02 0
05 03 02 O

P =
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Example (Cont'd)

o P [bUS2(a A b)]
o Syes = {53}1 Sno = {52} and Smaybe = {51354}

P = [005 064} and b = (0.1,0.2)*

Probp(si,v)|  [0.18
[ProbM(54,¢)] - [0.25}
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Extension to IDTMCs

Sample probability transition relation for IDTMC

0 [0.49,0.51] [0.09,0.11] [0.39,0.41]

p_ |[0:49,051] 0 0 [0.49,0.51]
- 0 [0.79,0.81] [0.19,0.21] 0
[0.49,0.51] [0.29,0.31] [0.19,0.21] 0

Analysis using Interval Arithmetic

vk =P'vi_1+b

Successive computation inherits from the loss of precision due to
interval arithmetic

To overcome this loss of precision, in the bounded case, we use
affine arithmetic
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Affine Forms

Interval Analysis Problem: Compute x — x

[a,b] —[a,b] = [a— b,b—a] D [0,0]

In AA, the interval [a, b] is represented using the affine expression:

a+b+b—a
2 2

€1,

€1 € [-1,1] is introduced to capture the uncertainty.

/
N d_ef a a a _ a a_,
a = apgtajer+---+aje=o5+ o€,
i=1
@ of,...,qj are real coefficients (error weights).
® €1,...,€ are symbolic error variables.
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Affine Arithmetic

@ 5 and b are two affine forms

@ )\, ( be two finite real numbers

Linear Operations

>
H-
o
Il

/
' (f o)+ Y (af £ ab)e
=1

I
A2 E e+ Y (had)e
i=1

/
3+¢E @@+ O+ e
=1

1=
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Model Checking IDTMC

Main idea

Split P into a central matrix P, and an interval matrix E, which
encodes the uncertainty of the model: P = P. + E

@ Matrix P. is stochastic (all rows sum up to 1) in our case

@ The matrix E is represented using AA error terms

Thus, the equation for DTMC analysis vx = P'vi_1 + b becomes:
vi(€) = (P¢ + E'(€))vk—1(€) + (b + b(e))

The updated components of vi(e) are non-linear (polynomial)
functions of the perturbations (€j)1<;i j<n-
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Combining AA and IA

Overapproximation

Split non-linear component computation of vk(e) into three parts:
@ a constant value cx
@ /k(€) is the linear part of vi(e€) using AA

@ [y is an IA-overapproximation of vi(e) — (cx + Ik(€))

vk(e) € ﬁk d:ef Ck + Ik(e) + Oy

Ck = P(’_.ck,l + b
/k(e) = Pé/kfl(E) + EI(E)Ckfl + b(E)
Ok = POk 1 + E'(Ok_1 + lk_1)
We still need to compute [lk: that is evaluate l,_.

Ix—1 contains component-wise wrapping interval bounds for /_1(e).
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Computing lx_1

@ For each component of the n-dimensional interval-vector l;_1:

max / min E Qi€

1<ij<n
st. —¢gi<¢€<e;,1<i,j<n (LP)

n

d pjte=11<i<n

j=1

@ the feasible region is not empty for a normalized IDTMC

@ any off-the-shelf LP solver can be used
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Specificity of learned IDTMC

@ The matrix P. is stochastic (rows sum up to 1),
@ which makes 27:1 €¢j=0,1<i<n

— It turns out that under these assumptions, we need to only
sort affine error weights to compute l,_1 (see next slide)

@ In fact: it can be done in linear time by reduction to weighted
median problem (see paper)
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Saturation

Given a linear programming problem of the form of (LP), there
exists a feasible maximizing solution that leaves at most one
variable non-saturated. All other variables are positively or
negatively saturated.

It is then sufficient to determine:
@ the non-saturated index, say k
@ the set @ of positively saturated variables
@ the set © of negatively saturated variables

The value of €, is then determined by

€k = — Z EiZZGi—ZEi

icoud ico icd
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(unbounded) Until properties - DTMC

Fixpoint formulation:
v=Pv+b

Proposition

Let A be a square matrix of dimension n x n such that
e Vi, j,1<i,j<n,5a;el0,1]
o Vi,1<i< n,0<ZJ’-’:1a,-j <1
e Jij1<i< n,zj’.’zla,-j <1

Let /, denote the identity matrix of dimension n. Then

A — I, is invertible.

Experiments

the matrix

= Therefore v = (I — P")71b
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(unbounded) Until properties - IDTMC

Fixpoint formulation

c=Pc+b
I(e) = PLI(€) + E'(e)c + b(e)
O=PO+EO+])

As for DTMCs, we derive ¢ and /(¢) as follows:

c=(I-P) b
I(e) = (I = PO) "X (E'(e)c + b(e))

and compute an overapproximation of []

(I- P.—ENO=FE
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Smart Grid Management System

e Data collected for renewable energy sources (wind, solar)

@ Fluctuations in demand and supply modeled as Markov chain

0.0027,
| (0.0247 0.024 .
L il It i [ - 0.304 o o e
R R i

0.0329 0.0329

Energy Generation Profilke (1 Year

0.6959

[

0.0027

@ Instead: We learned IDTMC and performed analysis
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Smart Grid Management System (cont.)

Table : 1A versus AA+LP

# Days 1A AA+LP
P1 7 [0.55,1] [0.83,0.98]
P 7 [0.35,1] [0.70,0.80]

P1: What is the probability that within k days, the power grid will
switch from high supply mode to low supply mode:
P[36m < 6 < o USKO < 6 < Soum).

P>: What is the probability that within k days, the power grid will
switch from low supply mode to low demand mode:
P[0 <6 < 36m USKSS5m <6< 0]
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Conclusion and Future Work

o Efficient computation of
simple reachability
properties over IDTMC. 117 1 Logs

o Exact propagation of f '

first order error terms.

Bootstrappingl
Future work Model Checking O

) ) Linear Programming O . O

@ The propagation of first AffineAnalysis |~ T

order error terms allow Verification €= OO
witness generation. OO Model

@ Extension to nested and
multiple P operators.
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Thank you for your attention!

Questions?7??

HSCC 2013 (part of CPSWeek 2013)
e T

@ Submission deadline: October 15th, 2012 (strict!)
@ http://2013.hscc-conference.org
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