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Counter encodes the difference between clocks when it is an
integral value...
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...and two consecutive integers if the difference between clocks
lies in between those integral values



Two-Clock Timed Automata to Bounded
One-Counter Automata

Suppose we wish to reset clock y only
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• counter must be below n + yu

• counter must be above n + yl

 add value from the interval [yl , yu] to the counter (requires
gadget)
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Answering the Pólya
Question



George Pólya (1887-1985)

“If there is a problem you can’t solve, then there is an
easier problem you can solve: find it.”
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Reachability via Lattice Paths

Idea: transform the reachability question into a question about the
existence of lattice path in a convex polygon
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Reachability via Lattice Paths

There exists a lattice path reaching a particular point (x , y) if, and
only if, the number of lattice points in the polygon is at least

x + y + 1



Implications for Two-Clock Timed Automata

Bézout automaton introduced in [Naves, 2006]
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One control location, three self-loops

Let the bound be 20 and the target be 12

Example of a reaching run where red=7, green=-11 and blue=17



Conclusion

This talk showed

• a relationship between reachability problems in timed and
bounded counter automata with respect to the resources
available

• equivalence between two major problems that have been
stated as open

• a simple class of bounded one-counter automata for which
reachability is open



Conclusion

This talk showed

• a relationship between reachability problems in timed and
bounded counter automata with respect to the resources
available

• equivalence between two major problems that have been
stated as open

• a simple class of bounded one-counter automata for which
reachability is open



Conclusion

This talk showed

• a relationship between reachability problems in timed and
bounded counter automata with respect to the resources
available

• equivalence between two major problems that have been
stated as open

• a simple class of bounded one-counter automata for which
reachability is open



Conclusion

This talk showed

• a relationship between reachability problems in timed and
bounded counter automata with respect to the resources
available

• equivalence between two major problems that have been
stated as open

• a simple class of bounded one-counter automata for which
reachability is open


