On the Relationship between Reachability Problems in Timed and Counter Automata

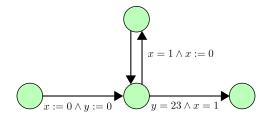
Christoph Haase^{1,2} Joël Ouaknine² James Worrell²

¹ now at LSV, CNRS & ENS de Cachan, France

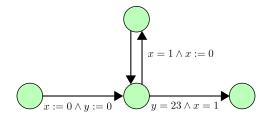
²Department of Computer Science, University of Oxford, UK

Reachability Problems '12 — September 18, 2012

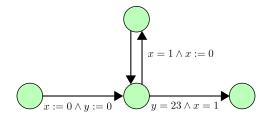
Introduction



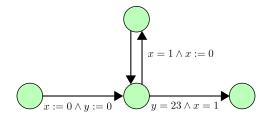
- Comprise a finite-state controller with a finite number of clocks ranging of $\mathbb{R}_{\geq 0}$
- Along transitions clocks can be compared to constants and reset
- · Constants are encoded in binary



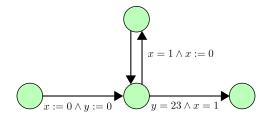
- Comprise a finite-state controller with a finite number of clocks ranging of $\mathbb{R}_{\geq 0}$
- Along transitions clocks can be compared to constants and reset
- · Constants are encoded in binary



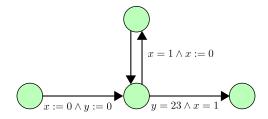
- Comprise a finite-state controller with a finite number of clocks ranging of $\mathbb{R}_{\geq 0}$
- Along transitions clocks can be compared to constants and reset
- · Constants are encoded in binary



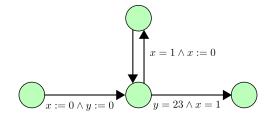
- Comprise a finite-state controller with a finite number of clocks ranging of $\mathbb{R}_{\geq 0}$
- Along transitions clocks can be compared to constants and reset
- · Constants are encoded in binary

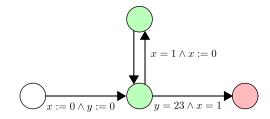


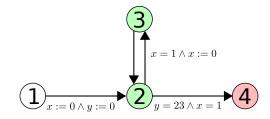
- Comprise a finite-state controller with a finite number of clocks ranging of $\mathbb{R}_{\geq 0}$
- Along transitions clocks can be compared to constants and reset
- · Constants are encoded in binary

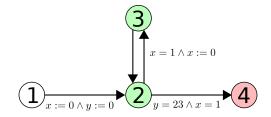


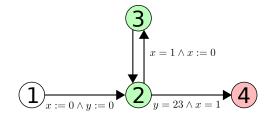
- Comprise a finite-state controller with a finite number of clocks ranging of $\mathbb{R}_{\geq 0}$
- Along transitions clocks can be compared to constants and reset
- · Constants are encoded in binary

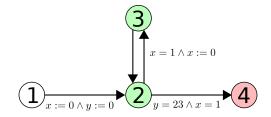






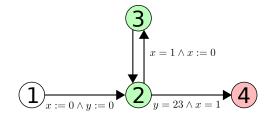


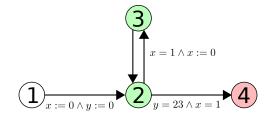




Can we reach $(4, x \mapsto 1, y \mapsto 23)$ starting in $(1, x \mapsto 4, y \mapsto 2)$

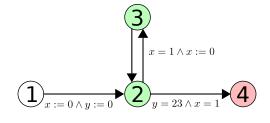
Yes we can!





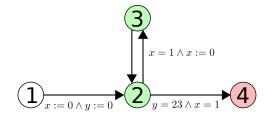
Can we reach $(4, x \mapsto 1, y \mapsto 23)$ starting in $(1, x \mapsto 4, y \mapsto 2)$

 $(1, x \mapsto 4, y \mapsto 2)$



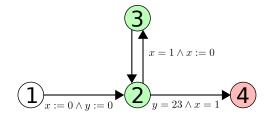
Can we reach $(4, x \mapsto 1, y \mapsto 23)$ starting in $(1, x \mapsto 4, y \mapsto 2)$

 $(1, x \mapsto 4, y \mapsto 2) \rightarrow (2, x \mapsto 0, y \mapsto 0)$

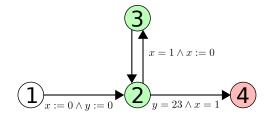


Can we reach $(4, x \mapsto 1, y \mapsto 23)$ starting in $(1, x \mapsto 4, y \mapsto 2)$

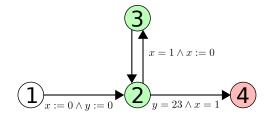
 $(1, x \mapsto 4, y \mapsto 2) \rightarrow (2, x \mapsto 0, y \mapsto 0) \rightsquigarrow (2, x \mapsto 1, y \mapsto 1)$



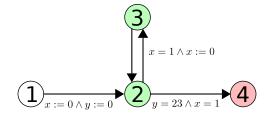
$$\begin{array}{c} (1, x \mapsto 4, y \mapsto 2) \rightarrow (2, x \mapsto 0, y \mapsto 0) \rightsquigarrow (2, x \mapsto 1, y \mapsto 1) \\ \rightarrow (3, x \mapsto 0, y \mapsto 1) \end{array}$$



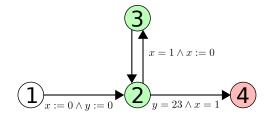
$$\begin{array}{c} (1, x \mapsto 4, y \mapsto 2) \rightarrow (2, x \mapsto 0, y \mapsto 0) \rightsquigarrow (2, x \mapsto 1, y \mapsto 1) \\ \rightarrow (3, x \mapsto 0, y \mapsto 1) \rightsquigarrow (3, x \mapsto 0.5, y \mapsto 1.5) \end{array}$$



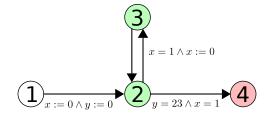
$$\begin{array}{c} (1, x \mapsto 4, y \mapsto 2) \rightarrow (2, x \mapsto 0, y \mapsto 0) \rightsquigarrow (2, x \mapsto 1, y \mapsto 1) \\ \rightarrow (3, x \mapsto 0, y \mapsto 1) \rightsquigarrow (3, x \mapsto 0.5, y \mapsto 1.5) \\ \rightarrow (2, x \mapsto 0.5, y \mapsto 1.5) \end{array}$$



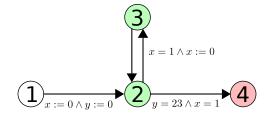
$$\begin{array}{c} (1, x \mapsto 4, y \mapsto 2) \rightarrow (2, x \mapsto 0, y \mapsto 0) \rightsquigarrow (2, x \mapsto 1, y \mapsto 1) \\ \rightarrow (3, x \mapsto 0, y \mapsto 1) \rightsquigarrow (3, x \mapsto 0.5, y \mapsto 1.5) \\ \rightarrow (2, x \mapsto 0.5, y \mapsto 1.5) \rightsquigarrow (2, x \mapsto 1, y \mapsto 2) \end{array}$$



$$\begin{array}{c} (1, x \mapsto 4, y \mapsto 2) \rightarrow (2, x \mapsto 0, y \mapsto 0) \rightsquigarrow (2, x \mapsto 1, y \mapsto 1) \\ \rightarrow (3, x \mapsto 0, y \mapsto 1) \rightsquigarrow (3, x \mapsto 0.5, y \mapsto 1.5) \\ \rightarrow (2, x \mapsto 0.5, y \mapsto 1.5) \rightsquigarrow (2, x \mapsto 1, y \mapsto 2) \rightarrow \cdots \end{array}$$



$$\begin{array}{c} (1, x \mapsto 4, y \mapsto 2) \rightarrow (2, x \mapsto 0, y \mapsto 0) \rightsquigarrow (2, x \mapsto 1, y \mapsto 1) \\ \rightarrow (3, x \mapsto 0, y \mapsto 1) \rightsquigarrow (3, x \mapsto 0.5, y \mapsto 1.5) \\ \rightarrow (2, x \mapsto 0.5, y \mapsto 1.5) \rightsquigarrow (2, x \mapsto 1, y \mapsto 2) \rightarrow \cdots \\ \rightarrow (2, x \mapsto 1, y \mapsto 23) \end{array}$$



$$\begin{array}{c} (1, x \mapsto 4, y \mapsto 2) \rightarrow (2, x \mapsto 0, y \mapsto 0) \rightsquigarrow (2, x \mapsto 1, y \mapsto 1) \\ \rightarrow (3, x \mapsto 0, y \mapsto 1) \rightsquigarrow (3, x \mapsto 0.5, y \mapsto 1.5) \\ \rightarrow (2, x \mapsto 0.5, y \mapsto 1.5) \rightsquigarrow (2, x \mapsto 1, y \mapsto 2) \rightarrow \cdots \\ \rightarrow (2, x \mapsto 1, y \mapsto 23) \rightarrow (4, x \mapsto 1, y \mapsto 23) \end{array}$$

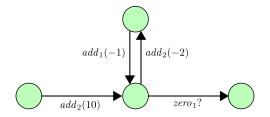
- General reachability problem is **PSPACE-complete** [Alur, Dill 1994]
- Reachability is PSPACE-complete for 3 clocks, or for an unbounded number of clocks and constants from {0,1} [Courcoubetis, Yannakakis, 1992]
- Reachability is NLOGSPACE-complete for one clock and NP-hard for two clocks [Laroussinie, Markey, Schnoebelen, 2004]

- General reachability problem is PSPACE-complete [Alur, Dill 1994]
- Reachability is PSPACE-complete for 3 clocks, or for an unbounded number of clocks and constants from {0,1} [Courcoubetis, Yannakakis, 1992]
- Reachability is NLOGSPACE-complete for one clock and NP-hard for two clocks [Laroussinie, Markey, Schnoebelen, 2004]

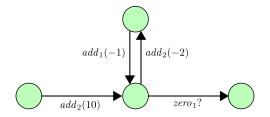
- General reachability problem is PSPACE-complete [Alur, Dill 1994]
- Reachability is PSPACE-complete for 3 clocks, or for an unbounded number of clocks and constants from {0, 1} [Courcoubetis, Yannakakis, 1992]
- Reachability is NLOGSPACE-complete for one clock and NP-hard for two clocks [Laroussinie, Markey, Schnoebelen, 2004]

- General reachability problem is PSPACE-complete [Alur, Dill 1994]
- Reachability is PSPACE-complete for 3 clocks, or for an unbounded number of clocks and constants from {0,1} [Courcoubetis, Yannakakis, 1992]
- Reachability is NLOGSPACE-complete for one clock and NP-hard for two clocks [Laroussinie, Markey, Schnoebelen, 2004]

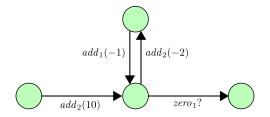
- General reachability problem is PSPACE-complete [Alur, Dill 1994]
- Reachability is PSPACE-complete for 3 clocks, or for an unbounded number of clocks and constants from {0,1} [Courcoubetis, Yannakakis, 1992]
- Reachability is NLOGSPACE-complete for one clock and NP-hard for two clocks [Laroussinie, Markey, Schnoebelen, 2004]



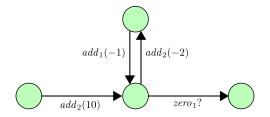
- Comprise a finite-state controller with a finite number of counters ranging of $\ensuremath{\mathbb{N}}$
- Along transitions counters can be incremented, decremented or tested for zero
- · Constants are encoded in binary



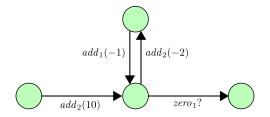
- Comprise a finite-state controller with a finite number of counters ranging of N
- Along transitions counters can be incremented, decremented or tested for zero
- · Constants are encoded in binary



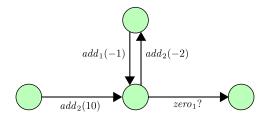
- Comprise a finite-state controller with a finite number of counters ranging of N
- Along transitions counters can be incremented, decremented or tested for zero
- · Constants are encoded in binary



- Comprise a finite-state controller with a finite number of counters ranging of $\ensuremath{\mathbb{N}}$
- Along transitions counters can be incremented, decremented or tested for zero
- · Constants are encoded in binary

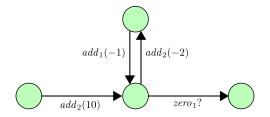


- Comprise a finite-state controller with a finite number of counters ranging of $\ensuremath{\mathbb{N}}$
- Along transitions counters can be incremented, decremented or tested for zero
- · Constants are encoded in binary

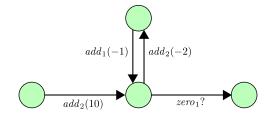


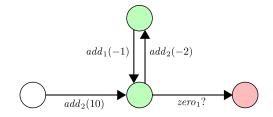
- Comprise a finite-state controller with a finite number of counters ranging of $\ensuremath{\mathbb{N}}$
- Along transitions counters can be incremented, decremented or tested for zero
- · Constants are encoded in binary

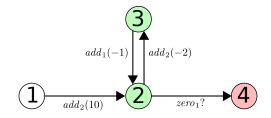
Counter Automata

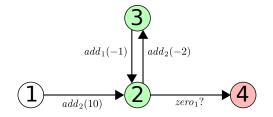


- Comprise a finite-state controller with a finite number of counters ranging of $\ensuremath{\mathbb{N}}$
- Along transitions counters can be incremented, decremented or tested for zero
- Constants are encoded in binary

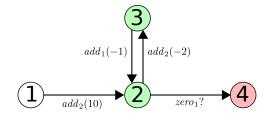




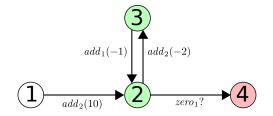




Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

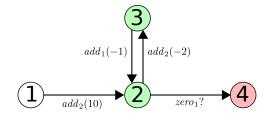


Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

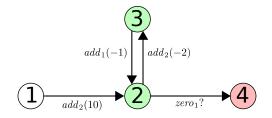


Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

No we cannot!

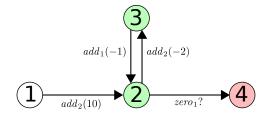


Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?



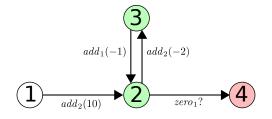
Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

 $(1, c_1 \mapsto 6, c_2 \mapsto 0)$



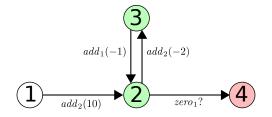
Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

 $(1, c_1 \mapsto 6, c_2 \mapsto 0) \rightarrow (2, c_1 \mapsto 6, c_2 \mapsto 10)$



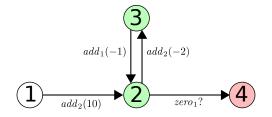
Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

 $(1, c_1 \mapsto 6, c_2 \mapsto 0) \rightarrow (2, c_1 \mapsto 6, c_2 \mapsto 10) \rightarrow (3, c_1 \mapsto 6, c_2 \mapsto 8)$



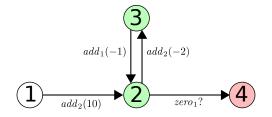
Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

 $\begin{array}{c} (1,c_1\mapsto 6,c_2\mapsto 0)\to (2,c_1\mapsto 6,c_2\mapsto 10)\to (3,c_1\mapsto 6,c_2\mapsto 8)\\ \to (2,c_1\mapsto 5,c_2\mapsto 8) \end{array}$



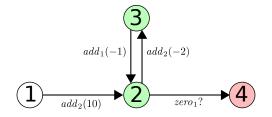
Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

 $\begin{array}{c} (1, c_1 \mapsto 6, c_2 \mapsto 0) \rightarrow (2, c_1 \mapsto 6, c_2 \mapsto 10) \rightarrow (3, c_1 \mapsto 6, c_2 \mapsto 8) \\ \rightarrow (2, c_1 \mapsto 5, c_2 \mapsto 8) \rightarrow \cdots \end{array}$



Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

 $\begin{array}{c} (1, c_1 \mapsto 6, c_2 \mapsto 0) \rightarrow (2, c_1 \mapsto 6, c_2 \mapsto 10) \rightarrow (3, c_1 \mapsto 6, c_2 \mapsto 8) \\ \rightarrow (2, c_1 \mapsto 5, c_2 \mapsto 8) \rightarrow \cdots \rightarrow (2, c_1 \mapsto 1, c_2 \mapsto 0) \end{array}$



Can we reach $(4, c_1 \mapsto 0, c_2 \mapsto 0)$ starting in $(1, c_1 \mapsto 6, c_2 \mapsto 0)$?

 $\begin{array}{c} (1, c_1 \mapsto 6, c_2 \mapsto 0) \rightarrow (2, c_1 \mapsto 6, c_2 \mapsto 10) \rightarrow (3, c_1 \mapsto 6, c_2 \mapsto 8) \\ \rightarrow (2, c_1 \mapsto 5, c_2 \mapsto 8) \rightarrow \cdots \rightarrow (2, c_1 \mapsto 1, c_2 \mapsto 0) \rightarrow \underbrace{\prime}$

- Reachability in counter automata is undecidable already for two counters [Minsky, 1961]
- Reachability is NP-complete for one counter [H., Kreutzer, O., W., 2009]
- Reachability is NLOGSPACE-complete for one counter with numbers encoded in unary [Lafourcade, Lugiez, Treinen, 2004]

- Reachability in counter automata is undecidable already for two counters [Minsky, 1961]
- Reachability is NP-complete for one counter [H., Kreutzer, O., W., 2009]
- Reachability is NLOGSPACE-complete for one counter with numbers encoded in unary [Lafourcade, Lugiez, Treinen, 2004]

- Reachability in counter automata is undecidable already for two counters [Minsky, 1961]
- Reachability is NP-complete for one counter [H., Kreutzer, O., W., 2009]
- Reachability is NLOGSPACE-complete for one counter with numbers encoded in unary [Lafourcade, Lugiez, Treinen, 2004]

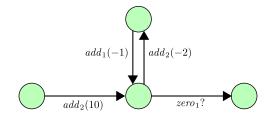
- Reachability in counter automata is undecidable already for two counters [Minsky, 1961]
- Reachability is NP-complete for one counter [H., Kreutzer, O., W., 2009]
- Reachability is NLOGSPACE-complete for one counter with numbers encoded in unary [Lafourcade, Lugiez, Treinen, 2004]

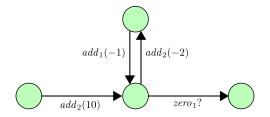
This talk:

Can we naturally relate reachability problems in timed and counter automata?

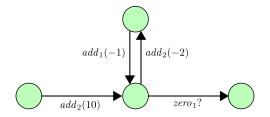
This talk:

Can we naturally relate reachability problems in timed and counter automata?

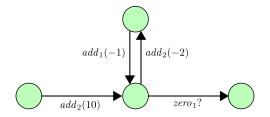




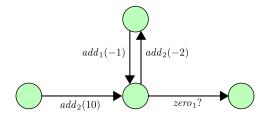
- Counters are constrained to take values from bounded intervals from N
- Zero tests can be discarded
- Can be viewed as strongly-bounded VASS as defined by [Memmim, Roucairol, 1980]



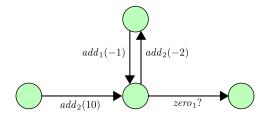
- Counters are constrained to take values from bounded intervals from $\ensuremath{\mathbb{N}}$
- Zero tests can be discarded
- Can be viewed as strongly-bounded VASS as defined by [Memmim, Roucairol, 1980]



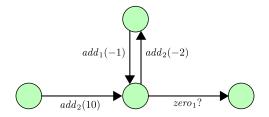
- Counters are constrained to take values from bounded intervals from $\ensuremath{\mathbb{N}}$
- Zero tests can be discarded
- Can be viewed as strongly-bounded VASS as defined by [Memmim, Roucairol, 1980]



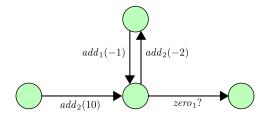
- Reachability is trivially decidable and in PSPACE
- Reachability with one counter is NP-hard and in PSPACE [Bouyer *et al.*, 2008]
- Reachability with one counter inter-reducible with model considered by Demri and Gascon where counter ranges over Z and sign tests are allowed



- Reachability is trivially decidable and in PSPACE
- Reachability with one counter is NP-hard and in PSPACE [Bouyer *et al.*, 2008]
- Reachability with one counter inter-reducible with model considered by Demri and Gascon where counter ranges over Z and sign tests are allowed



- Reachability is trivially decidable and in PSPACE
- Reachability with one counter is NP-hard and in PSPACE [Bouyer *et al.*, 2008]
- Reachability with one counter inter-reducible with model considered by Demri and Gascon where counter ranges over Z and sign tests are allowed



- Reachability is trivially decidable and in PSPACE
- Reachability with one counter is NP-hard and in PSPACE [Bouyer *et al.*, 2008]
- Reachability with one counter inter-reducible with model considered by Demri and Gascon where counter ranges over Z and sign tests are allowed

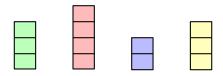
Bounded Two-Counter Automata and *n*-Clock Timed Automata

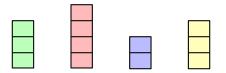
Bounded Two-Counter Automata and *n*-Clock Timed Automata

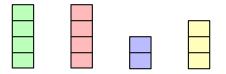
bounded *n*-counter automata $\downarrow \downarrow$ bounded two-counter automata $\downarrow \downarrow$ *n*-clock timed automata, $n \ge 3$ $\downarrow \downarrow$ bounded (2*n*+2)-counter automata

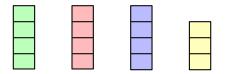
Bounded Two-Counter Automata and *n*-Clock Timed Automata

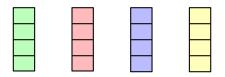
bounded *n*-counter automata $\downarrow \downarrow$ bounded two-counter automata $\downarrow \downarrow$ *n*-clock timed automata, $n \ge 3$ $\downarrow \downarrow$ bounded (2n + 2)-counter automata

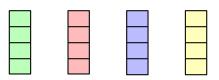


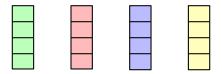




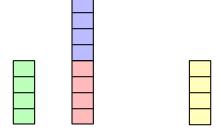




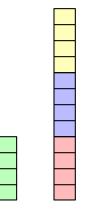




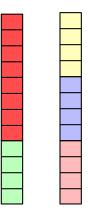
encode additional counters into second counter



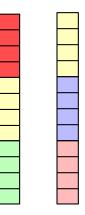
encode additional counters into second counter



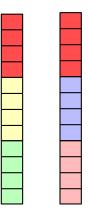
encode additional counters into second counter



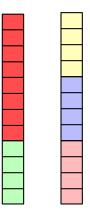
"reserve" temporary storage on first counter



move "higher" counter values to temporary storage



block "upper" bits and simulate operation



move temporarily stored counters back

Bounded Two-Counter Automata and *n*-Clock Timed Automata

bounded *n*-counter automata $\downarrow \downarrow$ bounded two-counter automata $\downarrow \downarrow$ *n*-clock timed automata, $n \ge 3$ $\downarrow \downarrow$ bounded (2n + 2)-counter automata

Bounded Two-Counter Automata and *n*-Clock Timed Automata

bounded *n*-counter automata $\downarrow \downarrow$ bounded two-counter automata $\downarrow \downarrow$ *n*-clock timed automata, $n \ge 3$ $\downarrow \downarrow$ bounded (2n + 2)-counter automata

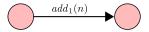
- Assume uniform bound *b* on two counters
- Store values of counters in difference of clock values
- If x = b then x y represents value of the first counter and x - z the value of the second counter
- · Replace in- and decrements by gadgets

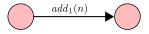
- Assume uniform bound b on two counters
- Store values of counters in difference of clock values
- If x = b then x y represents value of the first counter and x z the value of the second counter
- Replace in- and decrements by gadgets

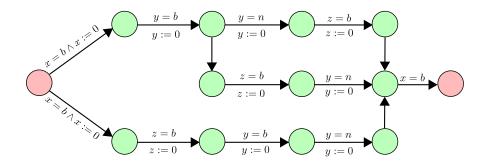
- Assume uniform bound *b* on two counters
- Store values of counters in difference of clock values
- If x = b then x y represents value of the first counter and x - z the value of the second counter
- · Replace in- and decrements by gadgets

- Assume uniform bound b on two counters
- · Store values of counters in difference of clock values
- If x = b then x y represents value of the first counter and x z the value of the second counter
- · Replace in- and decrements by gadgets

- Assume uniform bound *b* on two counters
- · Store values of counters in difference of clock values
- If x = b then x y represents value of the first counter and x z the value of the second counter
- · Replace in- and decrements by gadgets







Bounded Two-Counter Automata and *n*-Clock Timed Automata

bounded *n*-counter automata $\downarrow \downarrow$ bounded two-counter automata $\downarrow \downarrow$ *n*-clock timed automata, $n \ge 3$ $\downarrow \downarrow$ bounded (2n + 2)-counter automata

Bounded Two-Counter Automata and *n*-Clock Timed Automata

bounded *n*-counter automata $\downarrow \downarrow$ bounded two-counter automata $\downarrow \downarrow$ *n*-clock timed automata, $n \ge 3$ $\downarrow \downarrow$ bounded (2n + 2)-counter automata

· Main idea: simulate region abstraction on the counters

• Main idea: simulate region abstraction on the counters

- Main idea: simulate region abstraction on the counters
- · Region abstraction treats two configurations as equivalent if
 - (a) their control locations are the same
 - (b) the integral parts of each clock with a value below the maximum constant are the same
 - (c) the relative orders of the fractional parts of the values of the clocks are the same
 - (d) the clocks with fractional part 0 are the same

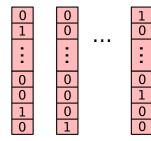
- Main idea: simulate region abstraction on the counters
- · Region abstraction treats two configurations as equivalent if
 - (a) their control locations are the same
 - (b) the integral parts of each clock with a value below the maximum constant are the same
 - (c) the relative orders of the fractional parts of the values of the clocks are the same
 - (d) the clocks with fractional part 0 are the same

- Main idea: simulate region abstraction on the counters
- · Region abstraction treats two configurations as equivalent if
 - (a) their control locations are the same
 - (b) the integral parts of each clock with a value below the maximum constant are the same
 - (c) the relative orders of the fractional parts of the values of the clocks are the same
 - (d) the clocks with fractional part 0 are the same

- Main idea: simulate region abstraction on the counters
- · Region abstraction treats two configurations as equivalent if
 - (a) their control locations are the same
 - (b) the integral parts of each clock with a value below the maximum constant are the same
 - (c) the relative orders of the fractional parts of the values of the clocks are the same
 - (d) the clocks with fractional part 0 are the same

- Main idea: simulate region abstraction on the counters
- · Region abstraction treats two configurations as equivalent if
 - (a) their control locations are the same
 - (b) the integral parts of each clock with a value below the maximum constant are the same
 - (c) the relative orders of the fractional parts of the values of the clocks are the same
 - (d) the clocks with fractional part 0 are the same

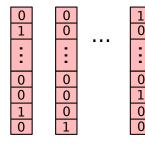
000000



relative order of clocks

integral part of clocks

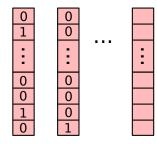
0	
0	
1	
1	



relative order of clocks

integral part of clocks

elapse of time

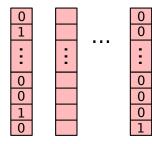


relative order of clocks

integral part of clocks

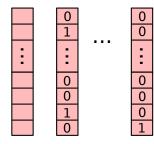
0

elapse of time



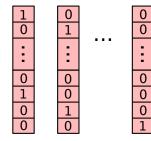
relative order of clocks

integral part of clocks



relative order of clocks

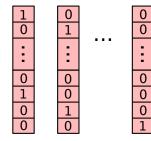
integral part of clocks



relative order of clocks

integral part of clocks

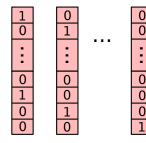
0



relative order of clocks

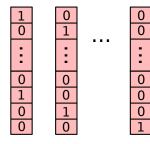
integral part of clocks

0



relative order of clocks

integral part of clocks



relative order of clocks

integral part of clocks

clock reset analogously

Theorem

Reachability in k-clock timed automata with $k \ge 3$ is logarithmicspace inter-reducible with reachability in bounded two-counter automata.

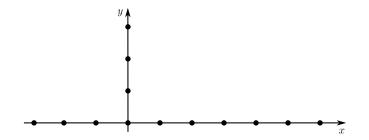
Theorem

Reachability in k-clock timed automata with $k \ge 3$ is logarithmicspace inter-reducible with reachability in bounded two-counter automata.

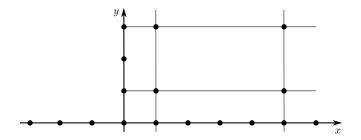
Corollary

Reachability in bounded k-counter automata is PSPACE-complete for $k \ge 2$.

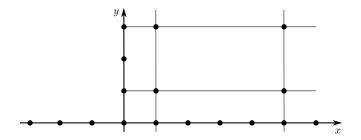
Bounded One-Counter Automata and Two-Clock Timed Automata



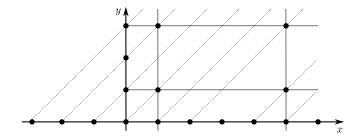
Given a timed automaton with *x*-constants $\{0, 1, 5\}$ and *y*-constants $\{0, 1, 3\}$



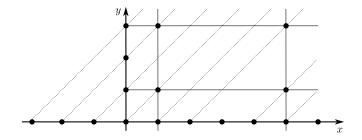
Given a timed automaton with *x*-constants $\{0, 1, 5\}$ and *y*-constants $\{0, 1, 3\}$



Given a timed automaton with *x*-constants $\{0, 1, 5\}$ and *y*-constants $\{0, 1, 3\}$ \rightsquigarrow regions of the automaton

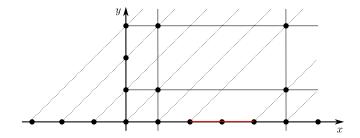


Given a timed automaton with *x*-constants $\{0, 1, 5\}$ and *y*-constants $\{0, 1, 3\}$

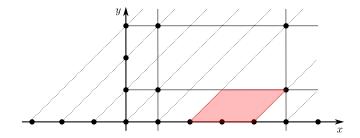


Given a timed automaton with *x*-constants $\{0, 1, 5\}$ and *y*-constants $\{0, 1, 3\}$

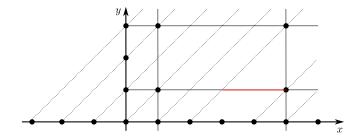
 \rightsquigarrow regions and clock difference zones of the automaton



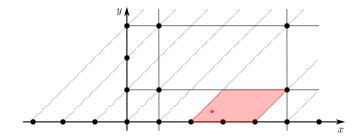
Elapse of time $x \in (2,3), y \in [0,0]$

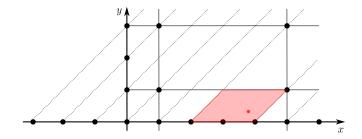


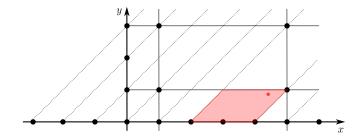
Elapse of time $x \in (2,3), y \in (0,1)$

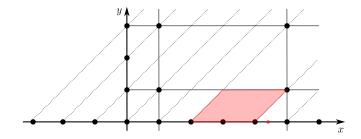


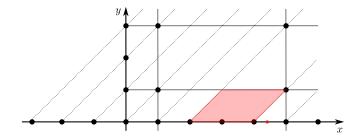
Elapse of time $x \in (2,3), y \in [1,1]$





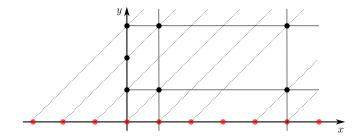




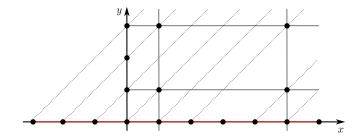


Regions and clock difference zones are too coarse to fully capture reachability properties

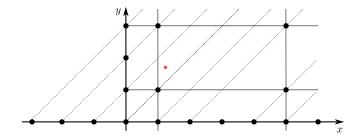
 \rightsquigarrow use counter in order to store difference between x and y



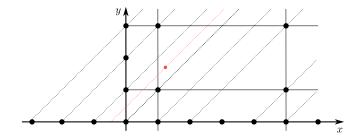
Counter encodes the difference between clocks when it is an integral value...

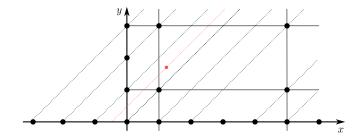


...and two consecutive integers if the difference between clocks lies in between those integral values

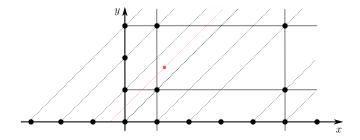


Suppose we wish to reset clock y only

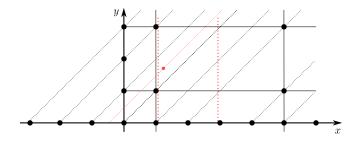




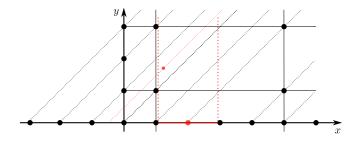
• Resulting counter must be smaller than $z + y_u$



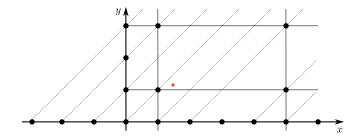
- Resulting counter must be smaller than $z + y_u$
- Resulting counter must be above x₁

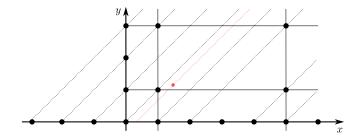


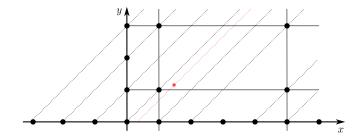
- Resulting counter must be smaller than $z + y_u$
- Resulting counter must be above x₁



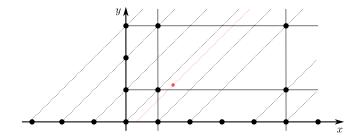
- Resulting counter must be smaller than $z + y_u$
- Resulting counter must be above x₁
- \rightarrow add y_u to the counter, non-deterministically decrement counter and then check it is greater than x_l



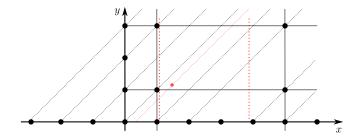




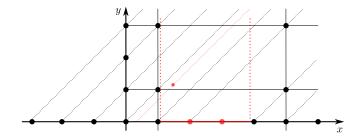
• counter must be below $n + y_u$



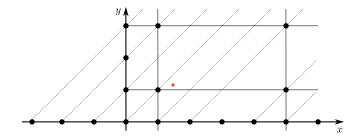
- counter must be below $n + y_u$
- counter must be above $n + y_1$

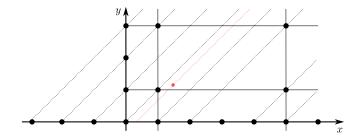


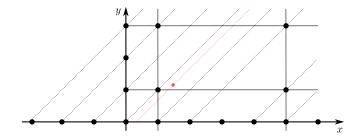
- counter must be below $n + y_u$
- counter must be above $n + y_1$



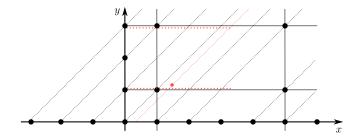
- counter must be below $n + y_u$
- counter must be above $n + y_l$
- \rightarrow add value from the interval $[y_l, y_u]$ to the counter (requires gadget)



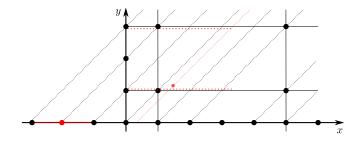




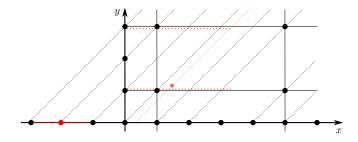
- counter must be below y_l
- counter must be above y_l



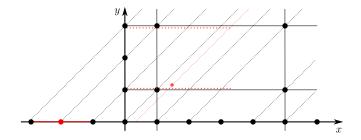
- counter must be below y_1
- counter must be above y_l



- counter must be below y_l
- counter must be above y_l



- counter must be below y_l
- counter must be above y_l
- \rightarrow connect to a gadget which non-deterministically decrements the counter and then verifies that it is in $(-y_u, -y_l)$



Remaining polynomially many cases follow analogously

Bounded One-Counter Automata to Two-Clock Timed Automata to

 Other direction follows straightforwardly by encoding counter as the difference of two clocks, similar to the case with two counters

Bounded One-Counter Automata to Two-Clock Timed Automata to

 Other direction follows straightforwardly by encoding counter as the difference of two clocks, similar to the case with two counters

Theorem

Reachability in two-clock timed automata is logarithmic-space inter-reducible with reachability in bounded one-counter automata.

Answering the Pólya Question

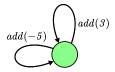
George Pólya (1887-1985)

"If there is a problem you can't solve, then there is an easier problem you can solve: find it."

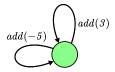
Reachability is NP-hard if the number of edges is unbounded and numbers are encoded in binary

Given a bound and a target, reachability is clearly decidable in polynomial time

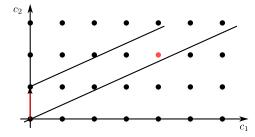
Given a bound and a target, reachability is clearly decidable in polynomial time \surd



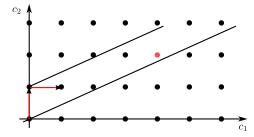
Given a bound a target *and the Parikh image of a reaching run*, reachability is decidable in polynomial time

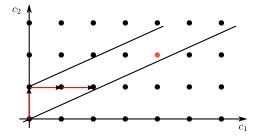


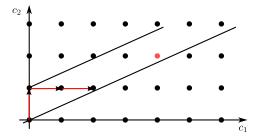
Given a bound a target and the Parikh image of a reaching run, reachability is decidable in polynomial time $\sqrt{}$



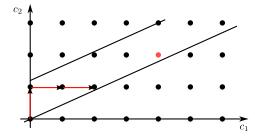
Idea: transform the reachability question into a question about the existence of lattice path in a convex polygon

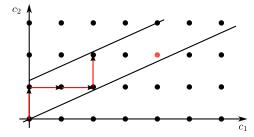


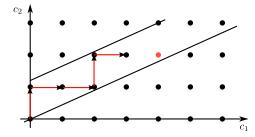


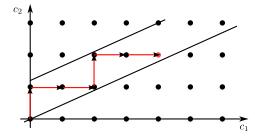


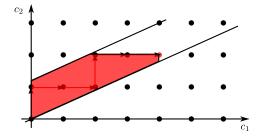
We get stuck since bound is too tight





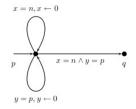






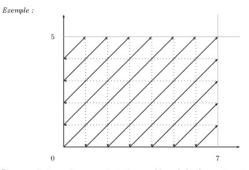
There exists a lattice path reaching a particular point (x, y) if, and only if, the number of lattice points in the polygon is at least x + y + 1

Implications for Two-Clock Timed Automata

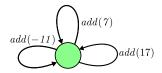


Bézout automaton introduced in [Naves, 2006]

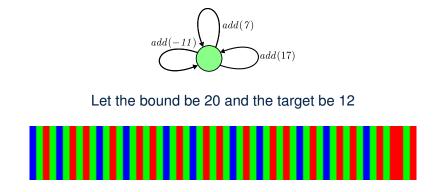
Implications for Two-Clock Timed Automata



Pour n = 7 et p = 5, une représentation graphique de la plus courte exécution atteignant p. Les transitions de délai sont en trait continu, les transitions d'action en pointillés. L'exécution passe dans toutes les régions entières sauf (7,0) et (0,5). Les remises à zéro successives sont faites sur les horloges y, x, y, x, y, x, y, x, et enfin <math>y.



Let the bound be 20 and the target be 12



Example of a reaching run where red=7, green=-11 and blue=17

- a relationship between reachability problems in timed and bounded counter automata with respect to the resources available
- equivalence between two major problems that have been stated as open
- a simple class of bounded one-counter automata for which reachability is open

- a relationship between reachability problems in timed and bounded counter automata with respect to the resources available
- equivalence between two major problems that have been stated as open
- a simple class of bounded one-counter automata for which reachability is open

- a relationship between reachability problems in timed and bounded counter automata with respect to the resources available
- equivalence between two major problems that have been stated as open
- a simple class of bounded one-counter automata for which reachability is open

- a relationship between reachability problems in timed and bounded counter automata with respect to the resources available
- equivalence between two major problems that have been stated as open
- a simple class of bounded one-counter automata for which reachability is open