
On the Relationship between Reachability Problems
in Timed and Counter Automata

Christoph Haase1,2 Joël Ouaknine2 James Worrell2

1now at LSV, CNRS & ENS de Cachan, France

2Department of Computer Science, University of Oxford, UK

Reachability Problems ’12 — September 18, 2012

Introduction

Timed Automata

• Comprise a finite-state controller with a finite number of clocks
ranging of R≥0

• Along transitions clocks can be compared to constants and
reset

• Constants are encoded in binary

Timed Automata

• Comprise a finite-state controller with a finite number of clocks
ranging of R≥0

• Along transitions clocks can be compared to constants and
reset

• Constants are encoded in binary

Timed Automata

• Comprise a finite-state controller with a finite number of clocks
ranging of R≥0

• Along transitions clocks can be compared to constants and
reset

• Constants are encoded in binary

Timed Automata

• Comprise a finite-state controller with a finite number of clocks
ranging of R≥0

• Along transitions clocks can be compared to constants and
reset

• Constants are encoded in binary

Timed Automata

• Comprise a finite-state controller with a finite number of clocks
ranging of R≥0

• Along transitions clocks can be compared to constants and
reset

• Constants are encoded in binary

Timed Automata

• Comprise a finite-state controller with a finite number of clocks
ranging of R≥0

• Along transitions clocks can be compared to constants and
reset

• Constants are encoded in binary

Reachability in Timed Automata

Reachability in Timed Automata

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

Yes we can!

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

Yes we can!

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

Yes we can!

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

Yes we can!

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)

→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)→ · · ·
→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)

→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)

→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)→ · · ·
→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0)

 (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)

→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)→ · · ·
→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)

→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)
→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)→ · · ·
→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1)

 (3, x 7→ 0.5, y 7→ 1.5)
→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)→ · · ·
→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)

→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)→ · · ·
→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)

→ (2, x 7→ 0.5, y 7→ 1.5)

 (2, x 7→ 1, y 7→ 2)→ · · ·
→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)

→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)

→ · · ·
→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)

→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)→ · · ·

→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)

→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)→ · · ·
→ (2, x 7→ 1, y 7→ 23)

→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

1 2

3

4

Can we reach (4, x 7→ 1, y 7→ 23) starting in (1, x 7→ 4, y 7→ 2)

(1, x 7→ 4, y 7→ 2)→ (2, x 7→ 0, y 7→ 0) (2, x 7→ 1, y 7→ 1)
→ (3, x 7→ 0, y 7→ 1) (3, x 7→ 0.5, y 7→ 1.5)

→ (2, x 7→ 0.5, y 7→ 1.5) (2, x 7→ 1, y 7→ 2)→ · · ·
→ (2, x 7→ 1, y 7→ 23)→ (4, x 7→ 1, y 7→ 23)

Reachability in Timed Automata

• General reachability problem is PSPACE-complete [Alur, Dill
1994]

• Reachability is PSPACE-complete for 3 clocks, or for an
unbounded number of clocks and constants from {0,1}
[Courcoubetis, Yannakakis, 1992]

• Reachability is NLOGSPACE-complete for one clock and
NP-hard for two clocks [Laroussinie, Markey, Schnoebelen,
2004]

Reachability in Timed Automata

• General reachability problem is PSPACE-complete [Alur, Dill
1994]

• Reachability is PSPACE-complete for 3 clocks, or for an
unbounded number of clocks and constants from {0,1}
[Courcoubetis, Yannakakis, 1992]

• Reachability is NLOGSPACE-complete for one clock and
NP-hard for two clocks [Laroussinie, Markey, Schnoebelen,
2004]

Reachability in Timed Automata

• General reachability problem is PSPACE-complete [Alur, Dill
1994]

• Reachability is PSPACE-complete for 3 clocks, or for an
unbounded number of clocks and constants from {0,1}
[Courcoubetis, Yannakakis, 1992]

• Reachability is NLOGSPACE-complete for one clock and
NP-hard for two clocks [Laroussinie, Markey, Schnoebelen,
2004]

Reachability in Timed Automata

• General reachability problem is PSPACE-complete [Alur, Dill
1994]

• Reachability is PSPACE-complete for 3 clocks, or for an
unbounded number of clocks and constants from {0,1}
[Courcoubetis, Yannakakis, 1992]

• Reachability is NLOGSPACE-complete for one clock and
NP-hard for two clocks [Laroussinie, Markey, Schnoebelen,
2004]

Reachability in Timed Automata

• General reachability problem is PSPACE-complete [Alur, Dill
1994]

• Reachability is PSPACE-complete for 3 clocks, or for an
unbounded number of clocks and constants from {0,1}
[Courcoubetis, Yannakakis, 1992]

• Reachability is NLOGSPACE-complete for one clock and
NP-hard for two clocks [Laroussinie, Markey, Schnoebelen,
2004]

Counter Automata

• Comprise a finite-state controller with a finite number of
counters ranging of N

• Along transitions counters can be incremented, decremented or
tested for zero

• Constants are encoded in binary

Counter Automata

• Comprise a finite-state controller with a finite number of
counters ranging of N

• Along transitions counters can be incremented, decremented or
tested for zero

• Constants are encoded in binary

Counter Automata

• Comprise a finite-state controller with a finite number of
counters ranging of N

• Along transitions counters can be incremented, decremented or
tested for zero

• Constants are encoded in binary

Counter Automata

• Comprise a finite-state controller with a finite number of
counters ranging of N

• Along transitions counters can be incremented, decremented or
tested for zero

• Constants are encoded in binary

Counter Automata

• Comprise a finite-state controller with a finite number of
counters ranging of N

• Along transitions counters can be incremented, decremented or
tested for zero

• Constants are encoded in binary

Counter Automata

• Comprise a finite-state controller with a finite number of
counters ranging of N

• Along transitions counters can be incremented, decremented or
tested for zero

• Constants are encoded in binary

Counter Automata

• Comprise a finite-state controller with a finite number of
counters ranging of N

• Along transitions counters can be incremented, decremented or
tested for zero

• Constants are encoded in binary

Reachability in Counter Automata

Reachability in Counter Automata

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

No we cannot!

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

No we cannot!

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

No we cannot!

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

No we cannot!

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

(1, c1 7→ 6, c2 7→ 0)→ (2, c1 7→ 6, c2 7→ 10)→ (3, c1 7→ 6, c2 7→ 8)
→ (2, c1 7→ 5, c2 7→ 8)→ · · · → (2, c1 7→ 1, c2 7→ 0)→

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

(1, c1 7→ 6, c2 7→ 0)

→ (2, c1 7→ 6, c2 7→ 10)→ (3, c1 7→ 6, c2 7→ 8)
→ (2, c1 7→ 5, c2 7→ 8)→ · · · → (2, c1 7→ 1, c2 7→ 0)→

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

(1, c1 7→ 6, c2 7→ 0)→ (2, c1 7→ 6, c2 7→ 10)

→ (3, c1 7→ 6, c2 7→ 8)
→ (2, c1 7→ 5, c2 7→ 8)→ · · · → (2, c1 7→ 1, c2 7→ 0)→

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

(1, c1 7→ 6, c2 7→ 0)→ (2, c1 7→ 6, c2 7→ 10)→ (3, c1 7→ 6, c2 7→ 8)

→ (2, c1 7→ 5, c2 7→ 8)→ · · · → (2, c1 7→ 1, c2 7→ 0)→

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

(1, c1 7→ 6, c2 7→ 0)→ (2, c1 7→ 6, c2 7→ 10)→ (3, c1 7→ 6, c2 7→ 8)
→ (2, c1 7→ 5, c2 7→ 8)

→ · · · → (2, c1 7→ 1, c2 7→ 0)→

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

(1, c1 7→ 6, c2 7→ 0)→ (2, c1 7→ 6, c2 7→ 10)→ (3, c1 7→ 6, c2 7→ 8)
→ (2, c1 7→ 5, c2 7→ 8)→ · · ·

→ (2, c1 7→ 1, c2 7→ 0)→

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

(1, c1 7→ 6, c2 7→ 0)→ (2, c1 7→ 6, c2 7→ 10)→ (3, c1 7→ 6, c2 7→ 8)
→ (2, c1 7→ 5, c2 7→ 8)→ · · · → (2, c1 7→ 1, c2 7→ 0)

→

Reachability in Counter Automata

1 2

3

4

Can we reach (4, c1 7→ 0, c2 7→ 0) starting in (1, c1 7→ 6, c2 7→ 0)?

(1, c1 7→ 6, c2 7→ 0)→ (2, c1 7→ 6, c2 7→ 10)→ (3, c1 7→ 6, c2 7→ 8)
→ (2, c1 7→ 5, c2 7→ 8)→ · · · → (2, c1 7→ 1, c2 7→ 0)→

Reachability in Counter Automata

• Reachability in counter automata is undecidable already for two
counters [Minsky, 1961]

• Reachability is NP-complete for one counter [H., Kreutzer, O.,
W., 2009]

• Reachability is NLOGSPACE-complete for one counter with
numbers encoded in unary [Lafourcade, Lugiez, Treinen, 2004]

Reachability in Counter Automata

• Reachability in counter automata is undecidable already for two
counters [Minsky, 1961]

• Reachability is NP-complete for one counter [H., Kreutzer, O.,
W., 2009]

• Reachability is NLOGSPACE-complete for one counter with
numbers encoded in unary [Lafourcade, Lugiez, Treinen, 2004]

Reachability in Counter Automata

• Reachability in counter automata is undecidable already for two
counters [Minsky, 1961]

• Reachability is NP-complete for one counter [H., Kreutzer, O.,
W., 2009]

• Reachability is NLOGSPACE-complete for one counter with
numbers encoded in unary [Lafourcade, Lugiez, Treinen, 2004]

Reachability in Counter Automata

• Reachability in counter automata is undecidable already for two
counters [Minsky, 1961]

• Reachability is NP-complete for one counter [H., Kreutzer, O.,
W., 2009]

• Reachability is NLOGSPACE-complete for one counter with
numbers encoded in unary [Lafourcade, Lugiez, Treinen, 2004]

This talk:

Can we naturally relate reachability problems in timed and counter
automata?

This talk:

Can we naturally relate reachability problems in timed and counter
automata?

Bounded Counter Automata

• Counters are constrained to take values from bounded intervals
from N

• Zero tests can be discarded
• Can be viewed as strongly-bounded VASS as defined by

[Memmim, Roucairol, 1980]

Bounded Counter Automata

• Counters are constrained to take values from bounded intervals
from N

• Zero tests can be discarded
• Can be viewed as strongly-bounded VASS as defined by

[Memmim, Roucairol, 1980]

Bounded Counter Automata

• Counters are constrained to take values from bounded intervals
from N

• Zero tests can be discarded
• Can be viewed as strongly-bounded VASS as defined by

[Memmim, Roucairol, 1980]

Bounded Counter Automata

• Counters are constrained to take values from bounded intervals
from N

• Zero tests can be discarded
• Can be viewed as strongly-bounded VASS as defined by

[Memmim, Roucairol, 1980]

Bounded Counter Automata

• Reachability is trivially decidable and in PSPACE

• Reachability with one counter is NP-hard and in PSPACE

[Bouyer et al., 2008]
• Reachability with one counter inter-reducible with model

considered by Demri and Gascon where counter ranges over Z
and sign tests are allowed

Bounded Counter Automata

• Reachability is trivially decidable and in PSPACE

• Reachability with one counter is NP-hard and in PSPACE

[Bouyer et al., 2008]
• Reachability with one counter inter-reducible with model

considered by Demri and Gascon where counter ranges over Z
and sign tests are allowed

Bounded Counter Automata

• Reachability is trivially decidable and in PSPACE

• Reachability with one counter is NP-hard and in PSPACE

[Bouyer et al., 2008]
• Reachability with one counter inter-reducible with model

considered by Demri and Gascon where counter ranges over Z
and sign tests are allowed

Bounded Counter Automata

• Reachability is trivially decidable and in PSPACE

• Reachability with one counter is NP-hard and in PSPACE

[Bouyer et al., 2008]
• Reachability with one counter inter-reducible with model

considered by Demri and Gascon where counter ranges over Z
and sign tests are allowed

Remainder of this talk

Relating Reachability in Timed and Bounded Counter Automata
with respect to logspace reductions:

Reach. in n-clock TA, n ≥ 3 ⇐⇒ Reach. in bounded 2-CA

Reach. in 2-clock TA ⇐⇒ Reach. in bounded 1-CA

Reach. in 1-clock TA ⇐⇒ Reach. in bounded 0-CA

Remainder of this talk

Relating Reachability in Timed and Bounded Counter Automata
with respect to logspace reductions:

Reach. in n-clock TA, n ≥ 3 ⇐⇒ Reach. in bounded 2-CA

Reach. in 2-clock TA ⇐⇒ Reach. in bounded 1-CA

Reach. in 1-clock TA ⇐⇒ Reach. in bounded 0-CA

Remainder of this talk

Relating Reachability in Timed and Bounded Counter Automata
with respect to logspace reductions:

Reach. in n-clock TA, n ≥ 3 ⇐⇒ Reach. in bounded 2-CA

Reach. in 2-clock TA ⇐⇒ Reach. in bounded 1-CA

Reach. in 1-clock TA ⇐⇒ Reach. in bounded 0-CA

Remainder of this talk

Relating Reachability in Timed and Bounded Counter Automata
with respect to logspace reductions:

Reach. in n-clock TA, n ≥ 3 ⇐⇒ Reach. in bounded 2-CA

Reach. in 2-clock TA ⇐⇒ Reach. in bounded 1-CA

Reach. in 1-clock TA ⇐⇒ Reach. in bounded 0-CA

Remainder of this talk

Relating Reachability in Timed and Bounded Counter Automata
with respect to logspace reductions:

Reach. in n-clock TA, n ≥ 3 ⇐⇒ Reach. in bounded 2-CA

Reach. in 2-clock TA ⇐⇒ Reach. in bounded 1-CA

Reach. in 1-clock TA ⇐⇒ Reach. in bounded 0-CA

Bounded Two-Counter
Automata

and
n-Clock Timed Automata

Bounded Two-Counter Automata and n-Clock
Timed Automata

bounded n-counter automata
⇓

bounded two-counter automata
⇓

n-clock timed automata, n ≥ 3
⇓

bounded (2n + 2)-counter automata

Bounded Two-Counter Automata and n-Clock
Timed Automata

bounded n-counter automata
⇓

bounded two-counter automata
⇓

n-clock timed automata, n ≥ 3
⇓

bounded (2n + 2)-counter automata

make bounds equal

make bounds equal

make bounds equal

make bounds equal

make bounds equal

encode additional counters into second counter

encode additional counters into second counter

encode additional counters into second counter

encode additional counters into second counter

“reserve” temporary storage on first counter

move “higher” counter values to temporary storage

block “upper” bits and simulate operation

move temporarily stored counters back

Bounded Two-Counter Automata and n-Clock
Timed Automata

bounded n-counter automata
⇓

bounded two-counter automata
⇓

n-clock timed automata, n ≥ 3
⇓

bounded (2n + 2)-counter automata

Bounded Two-Counter Automata and n-Clock
Timed Automata

bounded n-counter automata
⇓

bounded two-counter automata
⇓

n-clock timed automata, n ≥ 3
⇓

bounded (2n + 2)-counter automata

Simulating Bounded Two-Counter Automata
with Timed Automata

Main idea:

• Assume uniform bound b on two counters
• Store values of counters in difference of clock values
• If x = b then x − y represents value of the first counter and

x − z the value of the second counter
• Replace in- and decrements by gadgets

Simulating Bounded Two-Counter Automata
with Timed Automata

Main idea:

• Assume uniform bound b on two counters
• Store values of counters in difference of clock values
• If x = b then x − y represents value of the first counter and

x − z the value of the second counter
• Replace in- and decrements by gadgets

Simulating Bounded Two-Counter Automata
with Timed Automata

Main idea:

• Assume uniform bound b on two counters
• Store values of counters in difference of clock values
• If x = b then x − y represents value of the first counter and

x − z the value of the second counter
• Replace in- and decrements by gadgets

Simulating Bounded Two-Counter Automata
with Timed Automata

Main idea:

• Assume uniform bound b on two counters
• Store values of counters in difference of clock values
• If x = b then x − y represents value of the first counter and

x − z the value of the second counter
• Replace in- and decrements by gadgets

Simulating Bounded Two-Counter Automata
with Timed Automata

Main idea:

• Assume uniform bound b on two counters
• Store values of counters in difference of clock values
• If x = b then x − y represents value of the first counter and

x − z the value of the second counter
• Replace in- and decrements by gadgets

Simulating Bounded Two-Counter Automata
with Timed Automata

Simulating Bounded Two-Counter Automata
with Timed Automata

Bounded Two-Counter Automata and n-Clock
Timed Automata

bounded n-counter automata
⇓

bounded two-counter automata
⇓

n-clock timed automata, n ≥ 3
⇓

bounded (2n + 2)-counter automata

Bounded Two-Counter Automata and n-Clock
Timed Automata

bounded n-counter automata
⇓

bounded two-counter automata
⇓

n-clock timed automata, n ≥ 3
⇓

bounded (2n + 2)-counter automata

Simulating n-Clock Timed Automata with
Bounded Counter Automata

• Main idea: simulate region abstraction on the counters

• Region abstraction treats two configurations as equivalent if
(a) their control locations are the same
(b) the integral parts of each clock with a value below the maximum

constant are the same
(c) the relative orders of the fractional parts of the values of the clocks

are the same
(d) the clocks with fractional part 0 are the same

Simulating n-Clock Timed Automata with
Bounded Counter Automata

• Main idea: simulate region abstraction on the counters

• Region abstraction treats two configurations as equivalent if
(a) their control locations are the same
(b) the integral parts of each clock with a value below the maximum

constant are the same
(c) the relative orders of the fractional parts of the values of the clocks

are the same
(d) the clocks with fractional part 0 are the same

Simulating n-Clock Timed Automata with
Bounded Counter Automata

• Main idea: simulate region abstraction on the counters
• Region abstraction treats two configurations as equivalent if

(a) their control locations are the same
(b) the integral parts of each clock with a value below the maximum

constant are the same
(c) the relative orders of the fractional parts of the values of the clocks

are the same
(d) the clocks with fractional part 0 are the same

Simulating n-Clock Timed Automata with
Bounded Counter Automata

• Main idea: simulate region abstraction on the counters
• Region abstraction treats two configurations as equivalent if

(a) their control locations are the same
(b) the integral parts of each clock with a value below the maximum

constant are the same
(c) the relative orders of the fractional parts of the values of the clocks

are the same
(d) the clocks with fractional part 0 are the same

Simulating n-Clock Timed Automata with
Bounded Counter Automata

• Main idea: simulate region abstraction on the counters
• Region abstraction treats two configurations as equivalent if

(a) their control locations are the same
(b) the integral parts of each clock with a value below the maximum

constant are the same
(c) the relative orders of the fractional parts of the values of the clocks

are the same
(d) the clocks with fractional part 0 are the same

Simulating n-Clock Timed Automata with
Bounded Counter Automata

• Main idea: simulate region abstraction on the counters
• Region abstraction treats two configurations as equivalent if

(a) their control locations are the same
(b) the integral parts of each clock with a value below the maximum

constant are the same
(c) the relative orders of the fractional parts of the values of the clocks

are the same
(d) the clocks with fractional part 0 are the same

Simulating n-Clock Timed Automata with
Bounded Counter Automata

• Main idea: simulate region abstraction on the counters
• Region abstraction treats two configurations as equivalent if

(a) their control locations are the same
(b) the integral parts of each clock with a value below the maximum

constant are the same
(c) the relative orders of the fractional parts of the values of the clocks

are the same
(d) the clocks with fractional part 0 are the same

Simulating n-Clock Timed Automata with
Bounded Counter Automata

...

...

0
0
0
0

0
0

...

...

...

0 0
0

0
0
0

0

0
0

0

0
0

0
0
0 0

0 0
0

00
001

1

1

1

1

1 1
1

relative order of clocks

integral part of clocks

...

elapse of time

Simulating n-Clock Timed Automata with
Bounded Counter Automata

...

...

0
0
0
0

0
0

...

...

...

0 0
0

0
0
0

0

0
0

0

0
0

0
0
0 0

0 0
0

00
001

1

1

1

1

1 1
1

relative order of clocks

integral part of clocks

...

elapse of time

Simulating n-Clock Timed Automata with
Bounded Counter Automata

...

...

...

...

...

0 0
0

0
0
0

0

0
0

0

0
0

0
0
0 0

0 0
0

00
001

1

1

1

1

1 1
1

relative order of clocks

integral part of clocks

...

elapse of time

Simulating n-Clock Timed Automata with
Bounded Counter Automata

...

...

...

...

...

0 0
0

0
0
0

0

0
0

0

0
0

0
0
0 0

0 0
0

00
001

1

1

1

1

1 1
1

relative order of clocks

integral part of clocks

...

elapse of time

Simulating n-Clock Timed Automata with
Bounded Counter Automata

...

...

...

...

...

0 0
0

0
0
0

0

0
0

0

0
0

0
0
0 0

0 0
0

00
001

1

1

1

1

1 1
1

relative order of clocks

integral part of clocks

...

elapse of time

Simulating n-Clock Timed Automata with
Bounded Counter Automata

...

...

...

...

...

0 0
0

0
0
0

0

0
0

0

0
0

0
0
0 0

0 0
0

00
001

1

1

1

1

1 1
1

relative order of clocks

integral part of clocks

...

elapse of time

Simulating n-Clock Timed Automata with
Bounded Counter Automata

...

...

...

...

...

0 0
0

0
0
0

0

0
0

0

0
0

0
0
0 0

0
0

00
001

1

1

1

1

1
1

relative order of clocks

integral part of clocks

...

0
0

elapse of time

Simulating n-Clock Timed Automata with
Bounded Counter Automata

...

...

...

...

...

0 0
0

0
0
0

0

0
0

0

0
0

0
0
0 0

0
0

00
001

1

1

1

1

1
1

relative order of clocks

integral part of clocks

...

0
00

0
0
0

0
0

elapse of time

Simulating n-Clock Timed Automata with
Bounded Counter Automata

...

...

...

...

...

0 0
0

0
0
0

0

0
0

0

0
0

0
0
0 0

0
0

00
001

1

1

1

1

1
1

relative order of clocks

integral part of clocks

...

0
00

0
0
0

0
0

clock reset analogously

Theorem
Reachability in k-clock timed automata with k ≥ 3 is logarithmic-
space inter-reducible with reachability in bounded two-counter
automata.

Corollary
Reachability in bounded k-counter automata is PSPACE-complete
for k ≥ 2.

Theorem
Reachability in k-clock timed automata with k ≥ 3 is logarithmic-
space inter-reducible with reachability in bounded two-counter
automata.

Corollary
Reachability in bounded k-counter automata is PSPACE-complete
for k ≥ 2.

Bounded One-Counter
Automata

and
Two-Clock Timed Automata

Two-Clock Timed Automata to Bounded
One-Counter Automata

Given a timed automaton with x-constants {0,1,5} and
y -constants {0,1,3}

Two-Clock Timed Automata to Bounded
One-Counter Automata

Given a timed automaton with x-constants {0,1,5} and
y -constants {0,1,3}

 regions of the automaton

Two-Clock Timed Automata to Bounded
One-Counter Automata

Given a timed automaton with x-constants {0,1,5} and
y -constants {0,1,3}

 regions of the automaton

Two-Clock Timed Automata to Bounded
One-Counter Automata

Given a timed automaton with x-constants {0,1,5} and
y -constants {0,1,3}

 regions and clock difference zones of the automaton

Two-Clock Timed Automata to Bounded
One-Counter Automata

Given a timed automaton with x-constants {0,1,5} and
y -constants {0,1,3}

 regions and clock difference zones of the automaton

Two-Clock Timed Automata to Bounded
One-Counter Automata

Elapse of time
x ∈ (2,3), y ∈ [0,0]

Two-Clock Timed Automata to Bounded
One-Counter Automata

Elapse of time
x ∈ (2,3), y ∈ (0,1)

Two-Clock Timed Automata to Bounded
One-Counter Automata

Elapse of time
x ∈ (2,3), y ∈ [1,1]

Two-Clock Timed Automata to Bounded
One-Counter Automata

Regions and clock difference zones are too coarse to fully capture
reachability properties

Two-Clock Timed Automata to Bounded
One-Counter Automata

Regions and clock difference zones are too coarse to fully capture
reachability properties

Two-Clock Timed Automata to Bounded
One-Counter Automata

Regions and clock difference zones are too coarse to fully capture
reachability properties

Two-Clock Timed Automata to Bounded
One-Counter Automata

Regions and clock difference zones are too coarse to fully capture
reachability properties

 use counter in order to store difference between x and y

Two-Clock Timed Automata to Bounded
One-Counter Automata

Regions and clock difference zones are too coarse to fully capture
reachability properties

 use counter in order to store difference between x and y

Two-Clock Timed Automata to Bounded
One-Counter Automata

Counter encodes the difference between clocks when it is an
integral value...

Two-Clock Timed Automata to Bounded
One-Counter Automata

...and two consecutive integers if the difference between clocks
lies in between those integral values

Two-Clock Timed Automata to Bounded
One-Counter Automata

Suppose we wish to reset clock y only

Two-Clock Timed Automata to Bounded
One-Counter Automata

• Resulting counter must be smaller than z + yu

• Resulting counter must be above xl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• Resulting counter must be smaller than z + yu

• Resulting counter must be above xl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• Resulting counter must be smaller than z + yu

• Resulting counter must be above xl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• Resulting counter must be smaller than z + yu

• Resulting counter must be above xl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• Resulting counter must be smaller than z + yu

• Resulting counter must be above xl

 add yu to the counter, non-deterministically decrement counter
and then check it is greater than xl

Two-Clock Timed Automata to Bounded
One-Counter Automata

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below n + yu

• counter must be above n + yl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below n + yu

• counter must be above n + yl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below n + yu

• counter must be above n + yl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below n + yu

• counter must be above n + yl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below n + yu

• counter must be above n + yl

 add value from the interval [yl , yu] to the counter (requires
gadget)

Two-Clock Timed Automata to Bounded
One-Counter Automata

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below yl

•
• counter must be above yl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below yl

•
• counter must be above yl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below yl

• counter must be above yl

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below yl

• counter must be above yl

 connect to a gadget which non-deterministically decrements
the counter and then verifies that it is in (−yu,−yl)

Two-Clock Timed Automata to Bounded
One-Counter Automata

• counter must be below yl

• counter must be above yl

 connect to a gadget which non-deterministically decrements
the counter and then verifies that it is in (−yu,−yl)

Two-Clock Timed Automata to Bounded
One-Counter Automata

Remaining polynomially many cases follow analogously

Bounded One-Counter Automata to Two-Clock
Timed Automata to

• Other direction follows straightforwardly by encoding counter as
the difference of two clocks, similar to the case with two
counters

Theorem
Reachability in two-clock timed automata is logarithmic-space
inter-reducible with reachability in bounded one-counter automata.

Bounded One-Counter Automata to Two-Clock
Timed Automata to

• Other direction follows straightforwardly by encoding counter as
the difference of two clocks, similar to the case with two
counters

Theorem
Reachability in two-clock timed automata is logarithmic-space
inter-reducible with reachability in bounded one-counter automata.

Answering the Pólya
Question

George Pólya (1887-1985)

“If there is a problem you can’t solve, then there is an
easier problem you can solve: find it.”

One control location, one self-loop

Reachability is NP-hard if the number of edges is unbounded and
numbers are encoded in binary

One control location, one self-loop

Reachability is NP-hard if the number of edges is unbounded and
numbers are encoded in binary

One control location, one self-loop

Given a bound and a target, reachability is clearly decidable in
polynomial time

√

One control location, one self-loop

Given a bound and a target, reachability is clearly decidable in
polynomial time

√

One control location, two self-loops

Given a bound a target and the Parikh image of a reaching run,
reachability is decidable in polynomial time

√

One control location, two self-loops

Given a bound a target and the Parikh image of a reaching run,
reachability is decidable in polynomial time

√

Reachability via Lattice Paths

Idea: transform the reachability question into a question about the
existence of lattice path in a convex polygon

Reachability via Lattice Paths

Reachability via Lattice Paths

We get stuck since bound is too tight

Reachability via Lattice Paths

We get stuck since bound is too tight

Reachability via Lattice Paths

Reachability via Lattice Paths

Reachability via Lattice Paths

Reachability via Lattice Paths

Reachability via Lattice Paths

There exists a lattice path reaching a particular point (x , y) if, and
only if, the number of lattice points in the polygon is at least

x + y + 1

Implications for Two-Clock Timed Automata

Bézout automaton introduced in [Naves, 2006]

Implications for Two-Clock Timed Automata

One control location, three self-loops

Let the bound be 20 and the target be 12

Example of a reaching run where red=7, green=-11 and blue=17

One control location, three self-loops

Let the bound be 20 and the target be 12

Example of a reaching run where red=7, green=-11 and blue=17

Conclusion

This talk showed

• a relationship between reachability problems in timed and
bounded counter automata with respect to the resources
available

• equivalence between two major problems that have been
stated as open

• a simple class of bounded one-counter automata for which
reachability is open

Conclusion

This talk showed

• a relationship between reachability problems in timed and
bounded counter automata with respect to the resources
available

• equivalence between two major problems that have been
stated as open

• a simple class of bounded one-counter automata for which
reachability is open

Conclusion

This talk showed

• a relationship between reachability problems in timed and
bounded counter automata with respect to the resources
available

• equivalence between two major problems that have been
stated as open

• a simple class of bounded one-counter automata for which
reachability is open

Conclusion

This talk showed

• a relationship between reachability problems in timed and
bounded counter automata with respect to the resources
available

• equivalence between two major problems that have been
stated as open

• a simple class of bounded one-counter automata for which
reachability is open

