Patterns in Petri nets

Ph. Darondeau S. Demri R. Meyer C. Morvan

INRIA Rennes Bretagne Atlantique,
LSV Cachan,
University of Kaiserslautern,
Université Paris-Est

Informal presentation
RP’ 2012
Petri net reachability graphs

Example: 3-place net embeds into \mathbb{N}^3

An important comment:
The initial marking belongs to the definition of a PN and has major effect on the reachable structure.
Petri net reachability graphs

Example: 3-place net embeds into \mathbb{N}^3
Petri net reachability graphs

Example: 3-place net embeds into \mathbb{N}^3

An important comment: The initial marking belongs to the definition of a PN and has major effect on the reachable structure.
Petri net reachability graphs

Example: 3-place net embeds into \mathbb{N}^3

An important comment

The initial marking belongs to the definition of a PN and has major effect on the reachable structure
Contents

1 Petri nets and semilinearity

2 Pattern matching
Petri nets and semilinearity
Petri nets

Definition
A Petri net is a 4-tuple, \(N = (P, T, F, M_0) \)
\(P \) and \(T \) places and transitions
\(F : (P \times T) \cup (T \times P) \to \mathbb{N} \)
\(M_0 \) is the initial marking

Theorem (Mayr 81)
Given a Petri net \(N \) and two markings \(M \) and \(M' \), one can decide whether \(M' \) is reachable from \(M \)

Theorem (Hack 76)
Given two Petri nets \(N \) and \(N' \), it is undecidable to know whether \(\text{Reach}(N) = \text{Reach}(N') \)
Semilinear sets

$(\mathbb{N}^k, +)$ is a commutative monoid

Definition

$E \subseteq \mathbb{N}^k$ is linear if $E = x + \{y_1, \ldots, y_m\}^*$

($x \in \mathbb{N}^k$ and $y_1, \ldots, y_m \in \mathbb{N}^k$)

$E \subseteq \mathbb{N}^k$ is semilinear if finite union of linear subsets
Semilinear sets

\((\mathbb{N}^k, +)\) is a commutative monoid

Definition

\(E \subseteq \mathbb{N}^k\) is linear if \(E = x + \{y_1, \ldots, y_m\}^*\)

\((x \in \mathbb{N}^k \text{ and } y_1, \ldots, y_m \in \mathbb{N}^k)\)

\(E \subseteq \mathbb{N}^k\) is semilinear if finite union of linear subsets

Theorem

Semilinear subsets of \(\mathbb{N}^k\) coincide with the regular subsets of \(\mathbb{N}^k\). They form a boolean algebra.
Petri nets and semilinearity

Some Petri nets have a semilinear reachability set

Example

- Cyclic PN [Araki Kasami77, Bouziane Finkel97, Leroux11].
- Communication-free PN [Esparza97]
- Vector addition systems with states of dimension 2 [Hopcroft Pansiot79, Leroux Sutre04].
- PN with regular languages [Valk Vidal Naquet81].
- Reversal-bounded counter systems [Ibarra78].
Petri nets and semilinearity

Some Petri nets have a semilinear reachability set

Example

- Cyclic PN [Araki Kasami77, Bouziane Finkel97, Leroux11].
- Communication-free PN [Esparza97]
- Vector addition systems with states of dimension 2 [Hopcroft Pansiot79, Leroux Sutre04].
- PN with regular languages [Valk Vidal Naquet81].
- Reversal-bounded counter systems [Ibarra78].

Theorem (Hauschildt, Lambert 90)

The semilinearity of the reachability set of a PN is decidable
Petri nets and semilinearity

Some Petri nets have a semilinear reachability set

Example

- Cyclic PN [Araki Kasami77, Bouziane Finkel97, Leroux11].
- Communication-free PN [Esparza97]
- Vector addition systems with states of dimension 2 [Hopcroft Pansiot79, Leroux Sutre04].
- PN with regular languages [Valk Vidal Naquet81].
- Reversal-bounded counter systems [Ibarra78].

Theorem (Hauschildt, Lambert 90)

The semilinearity of the reachability set of a PN is decidable

Lemma (Hack 76)

Reachability of a semilinear set for any PN is decidable
Pattern matching
Toy example

Question
Given a Petri net, is there exactly one non-reachable marking?
Toy example

Question
Given a Petri net, is there exactly one non-reachable marking?

Question
Given a Petri net are there finitely many non-reachable markings?
Toy example

Question
Given a Petri net, is there exactly one non-reachable marking?

Question
Given a Petri net are there finitely many non-reachable markings?

Answer
We do not know a simple direct solution!
Pattern matching

The reachability set of N

For simplicity N only has two places

$$\begin{array}{c}
 M_0 \\
 p_2 \uparrow \\
 p_1 \\
\end{array}$$
Petri nets and semilinearity

Pattern matching

The reachability set of N

For simplicity N only has two places

A pattern $(\circ \cdot \circ \cdot \circ)$

Pattern matching problem (PMP)

In: A Petri net N, and a hitting pattern P.

Is P matched by N?
Pattern matching

The reachability set of N

For simplicity N only has two places

$\mathcal{R}P'12$ DDMM
Pattern matching

The reachability set of N

For simplicity N only has two places

Pattern matching problem (PMP)

In: A Petri net N, and a hitting pattern \mathcal{P}

Q: Is \mathcal{P} matched by N?
The semilinear case

Proposition

Let C be a class of Petri nets with *effectively semilinear reachability sets*. Then, PMP restricted to Petri nets in C is decidable.
The semilinear case

Proposition

Let C be a class of Petri nets with effectively semilinear reachability sets. Then, PMP restricted to Petri nets in C is *decidable*.

Lemma

The set of markings satisfying a given pattern, in the semilinear reachability set of a given PN is a semilinear set.
The semilinear case

Proposition

Let C be a class of Petri nets with effectively semilinear reachability sets. Then, PMP restricted to Petri nets in C is decidable.

Lemma

The set of markings satisfying a given pattern, in the semilinear reachability set of a given PN is a semilinear set.

Proof.

It is simply emptiness of the semilinear set (decidable).
Proof of the lemma – 1

Lemma

The set of markings satisfying a pattern \mathcal{P}, in the semilinear reachability set of a given PN is a semilinear set

Let N be a PN with semilinear reachability set

Induction on the number k of constrained positions in \mathcal{P}.
Proof of the lemma – 1

Lemma

The set of markings satisfying a pattern \mathcal{P}, in the semilinear reachability set of a given PN is a semilinear set

Let N be a PN with semilinear reachability set

Induction on the number k of constrained positions in \mathcal{P}.

(Basis) : if there is no such position, then the pattern is matched by N at every marking in \mathbb{N}^k.

Since $\text{Reach}(N)$ is semilinear, both sets are semilinear.
Proof of the lemma – 1

Lemma

The set of markings satisfying a pattern \(\mathcal{P} \), in the semilinear reachability set of a given PN is a semilinear set

Let \(N \) be a PN with semilinear reachability set

Induction on the number \(k \) of constrained positions in \(\mathcal{P} \).

(Basis) : if there is no such position, then the pattern is matched by \(N \) at every marking in \(\mathbb{N}^k \). If there is 1 such position \(\vec{a} \in [0, N_1] \times \cdots \times [0, N_k] \) :

\[
\{ \vec{v} - \vec{a} \in \mathbb{N}^k : \vec{v} \in \text{Reach}(N) \} \quad \text{if the constraint is \{\bullet\}}
\]

\[
\{ \vec{v} - \vec{a} \in \mathbb{N}^k : \vec{v} \in (\text{Reach}(N)) \} \quad \text{if the constraint is \{\circ\}}
\]

Since \(\text{Reach}(N) \) is semilinear, both sets are semilinear.
Proof of the lemma – 2

Lemma

The set of markings satisfying a pattern \mathcal{P}, in the semilinear reachability set of a given PN, is a semilinear set

(Induction) : (I) Let $k \geq 1$ and every k-constrained positions pattern is satisfied by a semilinear set
Let \mathcal{P} be a $k + 1$-constrained positions pattern.
Proof of the lemma – 2

Lemma

The set of markings satisfying a pattern \(P \), in the semilinear reachability set of a given PN, is a semilinear set

(Induction) : (I) Let \(k \geq 1 \) and every \(k \)-constrained positions pattern is satisfied by a semilinear set.

Let \(P \) be a \(k + 1 \)-constrained positions pattern. For each \(\vec{a} \in [0, N_1] \times \cdots \times [0, N_k] \) constrained position of \(P \), \(P_{\vec{a}} \) identical to \(P \) except for \(\vec{a} \): \(P_{\vec{a}}(\vec{a}) = \{\circ, \bullet\} \).

From (I): \(E_{\vec{a}} \subseteq \mathbb{N}^k \) the set matching \(P_{\vec{a}} \) is semilinear.
Proof of the lemma – 2

Lemma

The set of markings satisfying a pattern \mathcal{P}, in the semilinear reachability set of a given PN, is a semilinear set

(Induction): (I) Let $k \geq 1$ and every k-constrained positions pattern is satisfied by a semilinear set

Let \mathcal{P} be a $k+1$-constrained positions pattern.

For each $\vec{a} \in [0, N_1] \times \cdots \times [0, N_k]$ constrained position of \mathcal{P}

$\mathcal{P}_{\vec{a}}$ identical to \mathcal{P} except for \vec{a}: $\mathcal{P}_{\vec{a}}(\vec{a}) = \{\circ, \bullet\}$

From (I): $E_{\vec{a}} \subseteq \mathbb{N}^k$ the set matching $\mathcal{P}_{\vec{a}}$ is semilinear.

Let E be the set matching \mathcal{P}, we have:

$$E = \bigcap_{\vec{a}} E_{\vec{a}}$$

Hence E is semilinear
Positive patterns

Proposition

PMP *is decidable for positive patterns.*
Positive patterns

Proposition

PMP is decidable for positive patterns.

Proof.

Let N be a k places PN
Let \mathcal{P} a pattern with p (positive) constraints

1) Construct a Presburger formula over p markings that encodes their relative positions in the pattern

2) This defines a semilinear set E in $(\mathbb{N}^k)^p$

3) Construct a net N^p formed by p independent copies of the original net

4) Check reachability of E in N^p
The general case

Proposition

PMP restricted to patterns with at most two constrained positions is undecidable.

This proposition is proved reducing the undecidability of the non-inclusion of two reachability sets.
Proof

Let N_1 and N_2 be two nets. We create a new net N'.
Proof

Let N_1 and N_2 be two nets. We create a new net N'.
Proof

Let N_1 and N_2 be two nets. We create a new net N'.
Proof

Let N_1 and N_2 be two nets.
We create a new net N'

$$ Reach(N_2) \nsubseteq \text{Reach}(N_1) \text{ iff the pattern is reached} $$
Synthesis

Observation

This is a nice "mathematical" problem
This does not seem to have a lot of practical applications
Synthesis

Observation
This is a nice “mathematical” problem
This does not seem to have a lot of practical applications

Continuations
Try to consider several positive constraints
Find a decidable class with non semilinear reachability set
About Toy example

Question
Given a Petri net are there finitely many non-reachable markings?

Answer
Check if the reachability set is semilinear (Hauschildt, Lambert)
If not: infinitely many non-reachable marking
Otherwise: check if the complement is of finite size